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The New World

The “utility of the future” (UoF) world is different, but not necessarily in the
way it is commonly discussed.

Supply-driven, hierarchical electric industry structure is shifting toward a bi-
directional network-interactive architecture.
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The “Death Spiral”

The death spiral is likely
overblown.

= Limited technical potential of
DERs

= Going off-grid requires enormous
storage, very expensive

= Customer awareness is often low

= Possibility that electrification
mitigates impact of DERs

But the problem of nonlinear
feedbacks is real.
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So What Really is New about UoF?

Resource planning much more uncertain
Differentiation of customer classes and rates
Benefit/cost analysis framework

Optionality on pace and timing of improvements

Strong path dependency
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What are the Risks and Opportunities?

Big Deal

Opportunity?

* Improved customer satisfaction
 DER ownership (ratebase)

* New platform services with “value-related”
compensation

* Electrification
* Expansion to other network markets
* Improved financial market confidence
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What are the Risks and Opportunities?

Big Deal

Threat?

* Antiquated rate design hard to change

* Regulatory or legislative goals forcing DERs
 Asymmetric risks from asset obsolescence
* High cost/complex integration of DERs

* Cybersecurity

* Cost recovery issues — system upgrades needed to
support declining demand
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What are the Risks and Opportunities?

No Big Deal?

* Customers slow to adopt new technologies

* Sophisticated techs not viable for quite a while

* Wholesale techs remain more economical

* Early utility/regulatory experiments get push back

* Modest net growth in system from integration and
EVs offsets self-gen
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Navigating Uncertainty

Often, little agreement internally among utility managers.

Electrification cause significantly higher sales?
DERs cause a death spiral? How soon?
Is the entire UoF concept overblown?

There is little historical precedent.

This uncertainty and novelty creates a
need for a new approach for analyses.
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Traditional Scenario Analysis

Scenario modeling is often the workhorse for strategic analysis.

|dentifies key exogenous events, and models knowable
relationships
Technique is largely linear, dependent on historical data

Typically models initiatives as discrete alternatives, as opposed to
policies that emerge with endogenous rates of change

Impact of Exogenous Event On Utility Financials and Rates

PV Penetration |

Financial Model
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Results
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The Importance of the Path

For UoF, traditional methods of analysis usually focus on an
assumed end state.

Scenarios can feel very hypothetical — no behavioral information

ltems not managed in early stages may become unpleasant
constraints later

Traditional Modeling Approach Dynamic Approach

Simulated changes \ Incentive programs

Assumed changes to sales - to customer or utility

to sales and rates
Induced new
’ investment Changes to rates
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System Dynamics Approach

We have found the system dynamics approach to be an
important complement to traditional modeling.

A System Dynamics model is essentially an influence diagram
in which the “influences” are mathematically defined and
simulated.

“Scenarios” in system dynamics are projections of how
assumed change factors will interact and play out.

Enables a more complete understanding of path dependencies
Facilitates conversation and visualization about changing industry

Models dynamic effects associated with endogenous variables and
rates of change
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System Dynamics Approach (cont’d)

System Dynamics founded MIT in the 1950s.

Most well-known early System Dynamics model is Jay Forrester’s 1972
book The Limits to Growth

System Dynamics models are constructed by quantitatively defining
relationships between variables.

Causal loop diagrams represent relationships in a system

Stocks and flows are used to track movement through a system

Intuitive equations back-up the casual loop diagrams and the stocks and
flows
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Building a Consensus

System Dynamics is highly effective in bridging the gap between
teams/groups within an organization.

In modeling entire system, shared interests between groups are
illustrated.

Forecasting
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Simplified System Dynamics Framework

Below is a simplified model diagram of a System Dynamics model
constructed to model PV adoption and its effect on the utility:
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Simplifies Without Trivializing

Module 4: Payback Period

Module 1: Customer Stocks and Flows

The System Dynamics approach allows modeling of
endogenous feedback loops in a simple and straightforward
manner that still captures the underlying complexity of the
system. The example below is a screenshot of the actual
modeling behind Module 1 of the previous slide.
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Stimulates Real-Time Discussion

— L= System Dynamics software facilitates discussion among

managers and executives, as assumptions can be tested in real
=== ==  time using input/output objects such as “sliders”. To test

will assumptions using traditional modeling, it is often required to

===~ have staff re-run models outside of meeting.
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Real-Time Testing Example: Higher Fixed Charges

Increasing the residential fixed charge decreases the variable rate.
This feeds back to put downward pressure on DER adoption.
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Real-Time Testing Example: Decoupling

As “Decoupling” slider moves from none, to partial, to full decoupling, managers
can quickly see the effect on financial improvements over time.
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Applying system modeling to other UoF Issues

Opportunities and Risks Driven by Growth in Distributed Energy Resources
(DERs)

Modeling growth in Combined Heat and Power (CHP) for commercial customers
Testing the potential for PV Community Choice Aggregations
Understanding the integration of storage into solar deployments

Modeling energy efficiency potential and its feedback onto the utility business
structure

Examining potential for electric vehicles or electrification of heating loads
Evolving Business Models and Strategies
Modeling participation by unregulated subsidiary in DER Development

Understanding the impacts on a utility of entering the business of installing electric
vehicle charging stations

Regulatory and Policy Impacts

Modeling of utility incentives for DERs and opportunities for utilities to improve
finances by developing DERs

Testing impacts of potential new rate designs - Time of Use (TOU) Rates, Demand
Charges, or Performance Based Rates (PBR)
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Example System Dynamics Sketch for EVs

Because third parties and non-utility technologies are involved, many UoF issues cannot
be adequately analyzed without accounting for interdependencies and endogenous
structure. Below is an example of a causal loop diagram for EV adoption. Even in a high-
level sketch, feedback loops are evident.
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Key Takeaways

A major benefit of dynamic modeling is understanding path dependencies,
which are especially important when outcomes depend on multiple parties’
actions -- as with DER penetration.

Partly revealed automatically by the technique, because outcomes are results of
feedbacks and change rates, not assumed states

Can also build in time- or state-sensitive parameters, such as learning curves that
reflect simulation outcomes in prior periods

Understanding path dependency also requires identifying situations or
conditions where due-course extrapolations break down.

Need to test (simulate) strategies across a range of dynamic sensitivities for
uncertain behavior to identify critical conditions

Reveals why it happens, not just what it would be like if it did happen

Can foresee the time and conditions for a “tipping point”, so able to revise
strategy and reposition in advance.

Can find (and test) a plan with a better path, and start pursuing it before problems
become acute, policies too precedential, or opportunities too mature
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Conclusions

The system dynamics framework is somewhat new to electric utilities,
but is well suited to the UoF environment. Key applications include:
General corporate risk analysis — particular, of extent to which emerging but

uncertain changes in the market or policy space can alter the course of what
is feasible for the company

Consensus building communications tool for senior corporate management,
who must have a common view of how significant these UoF trends are and
in what ways the company is exposed vs. poised for a beneficial participation

Often divided beliefs internally about pace of change and best responses

Brainstorming at strategy retreats sometimes produces many interesting
speculations that cannot be tested or resolved with conventional models

Regulatory policy vetting in contexts where multiple parties debating
Path-dependent strategy formation

Determining when and why you have to make changes in order to succeed
Identifying what to monitor as bellwether indicators
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