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X here is some debate about the effi  cacy of dynamic pricing in hot and humid climates. On the one 
hand, the magnitude of load that could be potentially shifted or shed within a household is higher. 
On the other hand, customers may have less ability to shed this load.

We examine the impacts of dynamic pricing on conservation and load shifting in the hot and 
humid climate of Florida. We then compare the results to those from dynamic pricing experi-

ments across the world.
Our evaluation is based on the Energy Smart Florida (ESF) pilot study, which was run by Florida Power and Light 

(FPL), the third-largest electric utility in the United States. FPL serves more than 4.8 million customer accounts, 
comprising more than 10 million people across nearly half of the state of Florida.

Th e pilot was part of a suite of experiments funded by the U.S. Department of Energy through the American 
Recovery and Reinvestment Act. Th e pilot investigated the effi  cacy of providing enhanced feedback to customers 
about their electricity usage through In Home Displays (IHDs), advanced home energy controllers (HECs), and 
Critical Peak Pricing (CPP) when coupled with an HEC.

Unlike the T1 and T2 cells, 
the thermostats, electric water 
heaters and pool pumps of the 
T3 customers were programmed 
to conserve energy during peak 
windows on dynamically chosen 
event days, or critical peak days. 
Customers could override these 
programmed settings.

In the CPP rate, T3 cus-
tomers were charged higher 

prices during the event hours but received a rate discount for 
all other hours.

Th e ESF was designed to test the theory that enhanced feed-
back about energy usage through the IHDs and HECs would 
assist customers in conserving electricity, while the higher prices 
during critical peak pricing events will encourage customers to 
either shift or cut load during the event window.

Our Approach and Results
Figure One describes the design of the ESF pilot.

This experiment was implemented as a Randomized 
Controlled Trial (RCT), which represents the gold standard of 
experimental design. By randomly selecting customers in the 
treatment and control groups, we expect that customers in the 
treatment and control groups will have similar usage patterns in 
the pre-treatment period.

However, with smaller samples, some diff erences between 
the groups may occur. Our impact measure is the diff erence 
in electricity usage between the treatment and control group 
after our experimental intervention (Tpost – Cpost) net of the 
pre-existing diff erences between the groups (Tpre – Cpre).

We estimate this “diff erence-in-diff erences” impact measure 

Th e Energy Smart Florida pilot took place from August 2011 
through August 2012. It was implemented as a Randomized 
Controlled Trial (RCT) with three diff erent treatment groups 
and a control group. Hourly load data was collected on all groups 
during the pre-treatment and treatment periods. Th e pilot was 
both a behavioral and technological pilot.

ESF provided near real-time information through FPL’s smart 
meters. Each of FPL’s smart meters is equipped with two radios: 
a network interface radio used for utility operations such as 
obtaining meter readings; and a home area network (HAN) radio 
designed for bi-directional communication with in-home devices.

When activated, the HAN radio can communicate near 
real-time information to a compatible in-home device with 
which the radio has been paired. Th e elements of near real-time 
information can include whole-house power use, energy price, 
time synchronization and brief text messages.

FPL’s pilot deployed a range of HAN-enabled technologies 
in three treatments.

In the fi rst treatment, T1, customers remained on the standard 
rate and were provided with IHDs, which gave customers near 
real-time feedback about their energy usage. Without the IHDs, 
customers could only get their aggregate usage for the past month.

In the second treatment, T2, customers remained on the 
standard rate and were provided with HECs. HECs had graphic 
interfaces similar to the IHDs but also provided the customer 
with appliance-level control of the thermostat, electric water 
heater and/or pool pump.

In the third treatment, T3, customers were provided HECs 
and also placed on the CPP rate structure.

T

We tested the 
theory: feedback 
on energy usage 
will assist 
customers in 
conserving 
electricity.
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a lot of energy on a Saturday when nobody is home, she may 
reprogram her thermostat to turn down or off  on Saturdays. In 
addition to the learning eff ects of feedback, just having a visual 
representation of how much energy they are using may motivate 
customers to conserve.

Group T2 has HECs, which give customers greater control 
over several of their appliances. Th at may make it easier to 
conserve energy. Additionally, the HECs also provide the same 
visual information as IHDs.

Finally, Group T3 has the same technology as T2 and has 
the same motivations to conserve, arising from the provision of 
information and from having control over appliances. However, 
there is an additional motivation arising from the need to avoid 
high prices in the critical peak period. Some of the energy this 
group conserves in the peak period may not reappear during 
the off -peak periods, resulting in overall conservation of energy.

We expected to see load shifting for Treatment Group T3 
since it is the only group exposed to critical peak prices. We 
hypothesize several possible reasons why they may reduce load 
during critical peak periods.

First, customers may change their energy usage behaviors 
in response to the increased price during critical peak periods. 
Second, they may reduce load due to the HEC automated con-
trol, even without any behavioral change relating to the use of 
other appliances.

Th e HEC automated control is programmed to raise the 
thermostat temperature in summer and lower it in winter, turn 
off  the pool pump and turn off  the electric water heater. However, 
customers have the ability to override some, if not all, of these 
automatic features.

Finally, customers may decrease load during CPP events due 
to increased energy awareness induced by the events themselves. 
However, it is important to note that the critical peak prices 
will yield a behavior change only if the customers notice that an 
event is in progress.

Conservation
We estimate conservation impacts at the daily level. Figure Two 
shows the estimated total hourly impact in kilowatt-hours. We 
divide by the group-specifi c average hourly load in the treatment 
period to obtain the percentage impacts.

See Figure Two.
Th e conservation impacts in percentages are shown graphically 

in Figure Th ree. Th e point estimates for T1 and T3 are negative, 
while that for T2 is positive. However, none of these estimates 
are statistically distinguishable from zero.

In addition to the above analysis, we also combined Treatment 
Groups T2 and T3 to test whether there was an overall conserva-
tion impact from the HECs. We combined Treatment Groups 
T1, T2 and T3 to test whether there was an overall conservation 

using regression analysis. Th is allows us to increase the precision 
of our estimates by utilizing individual customer data, as opposed 
to just comparing group means, and by accounting for factors 
like fl uctuations in weather and individual-specifi c usage that 
does not change over time. We use regression analysis to answer 
two primary questions:

Is there any energy conservation due to the program treatments?
Is there any load shifting due to the program treatments?
Th eoretically, we hypothesize that there are several diff erent 

channels through which our experimental interventions may 
drive energy conservation, and that at least one of these factors 
will have an impact on each experimental group.

Group T1 has IHDs that give the customers feedback about 
their energy usage. Having better information about their usage 
patterns may lower the costs of energy conservation behavior, 
allowing customers to conserve more.

For example, if the IHD shows a customer that she uses 

Home controllers 
induced some 
conservation during 
winter and spring 
months, when weather 
is milder.
– Ahmad Faruqui
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RANDOMIZED CONTROLLED EXPERIMENT

AVERAGE HOURLY CONSERVATION IMPACTS

FIG. 1

FIG. 2

Control Group Treatment Group

Before Treatment Cpre Tpre

After Treatment Cpost Tpost

T1 T2 T3
Total Hourly Impact (kWh) -0.017 0.010 -0.068
Average Hourly Load (kWh/hr) 2.088 2.340 2.391
% Peak Impact -0.81% 0.43% -2.84%

Note: In this figure, Cpre (Tpre) represents the average usage 
of the control (treatment) group in the pre-treatment period. 
Similarly, Cpost (Tpost) represents the average usage of the 
control (treatment) group in the post-treatment period.

True Impact Measure = (Tpost – Cpost) – (Tpre – Cpre)
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For T3, we fi nd that there are statistically signifi cant energy 
conservation eff ects from January through April, while the 
months bordering this period are insignifi cant, but of similar 
magnitude. We fi nd similarly negative but smaller eff ects for 
T2 in this period, although only the April impact is statistically 
distinguishable from zero.

Th ese energy conservation impacts seem to occur in the winter 
and spring period, when the temperature humidity index is at 
its lowest. To test whether there is a relationship between THI 
and energy conservation we re-estimate equation 1, but allow 
for energy conservation impacts to vary by THI. We fi nd that 
at lower THI values there are signifi cant energy conservation 
impacts for T2 and T3, but they decrease to zero as the THI 
increases. Th ese impacts are larger for T3 than T2.

To recap our energy conservation fi ndings, we fi nd no sta-
tistically identifi able overall conservation impact for any of the 
treatment groups on an annual basis, although it seems that 
the HECs did induce some conservation during the winter and 
spring months when the weather was milder.

eff ect from feedback about energy usage.
By combining the groups, we increase our sample size and 

the precision with which we can identify treatment eff ects. 
However, in both cases, we still did not fi nd a signifi cant con-
servation impact.

See Figure Th ree.
Although we found no annual average energy conservation 

eff ects, we tested whether there were month-specifi c conserva-
tion eff ects. Th ese results are shown in Figure Four for all three 
treatment groups.

Th e left side y-axis shows energy conservation impact in per-
centage terms, while the right side y-axis shows the Temperature 
Humidity Index. Monthly energy conservation impacts are 
represented by bars, while the temperature humidity index is 
shown as a black line. Estimated impacts that are statistically 
signifi cant from zero are shown as solid color blocks, while shaded 
blocks represent non-signifi cant results.

See Figure Four.

We use 
regression 
analysis to 
estimate impacts 
at the hourly 
level.
– Neil Lessem
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Examining the non-winter impacts in more detail, it is clear 
from Figure Six that the fi rst fi ve non-winter events had a larger 
impact than the fi nal fi ve.

We can hypothesize several possible reasons why this may be 
the case: weather; equipment failure increased over time; increased 
ability to override equipment over time as customers learn how 
to do so; treatment fatigue.

With only ten events, we cannot conclusively examine what 
factors caused the reduction in impacts. However, the data is 
suggestive of possible causes. 

Figure Seven shows non-winter load impacts plotted as blue 
bars on the left y-axis, while THI is plotted as a grey line on the 
right y-axis. Th e fi rst fi ve events are cooler in temperature than 
the last fi ve, although this diff erence is not statistically signifi cant 
in a mean comparison test between both groups of events.

See Figure Seven.

Load Shifting
FPL conducted twelve CPP events, with 
the majority lasting three to four hours. 
Two lasted eight hours, the maximum 
duration allowed under the pilot tariff . 
Th e fi nal two events were on consecutive 
days. We estimate load-shifting impacts 
at the hourly level.

We use regression analysis to estimate 
impacts at the hourly level. To obtain 
the average load impact over all hours 
in an event window, we added up all the 
hourly impacts during the event window 
and divided that number by the number 
of hours in the event window.

Th is is shown graphically in Figure 
Five. Even though not all of the hourly 
impacts during the peak event window 
are signifi cant, the average impact over all 
hours for each event day is signifi cantly 
diff erent from zero.

Th e blue bars show our estimates of 
the average load impact, while the red 
bars show the interval between which 
we are 95 percent confi dent that the true 
impact lies.

See Figure Five.
Th e average load reduction across 

all events is 0.42 kilowatts or 14.5 per-
cent, with the average winter reduc-
tion (January and February) of 0.71 
kilowatts being almost double that of 
the average non-winter reduction of 
0.36 kilowatts. In percentage terms, the 
impact is in line with pilot studies around the world.

Figure Six shows the impacts of 138 pilot treatments with 
dynamic pricing treatments, including Variable Peak Pricing 
(VPP) and Peak Time Rebates (PTR) as well as CPP. Impacts are 
separated by whether or not they included enabling technologies, 
and are plotted against the peak to off -peak price ratio.

Th ese results are compiled in Arcturus, a database that we 
maintain to track the results of dynamic pricing pilots from 
around the globe. FPL’s CPP tariff  had a peak-to-off -peak price 
ratio of about 3.2.

As seen in the chart, the results are almost exactly in line 
with the Arcturus impact for a pilot with enabling technology. 
It should be noted, however, that this result is driven largely by 
the impacts from two winter events. Th e non-winter impacts are 
lower than those observed in other pilots.

See Figure Six.
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Conclusions
Applying regression analysis to data 
from a scientifi cally designed pilot in 
Florida, we fi nd that customers in a hot 
and humid climate can and do respond 
to dynamic pricing. Th ese customers shift 
load but do not appear to be engaging in 
energy-conserving behavior.

In terms of load shifting, we fi nd that 
on critical peak event days, customers 
reduced their peak period usage by 
approximately 0.42 kilowatts, or 14.5 
percent compared to what they would 
have used otherwise.

Reductions during winter event days 
were twice as large as those on non-win-
ter event days (0.71 kilowatts versus 0.36 kilowatts). We also fi nd 
that the impact was signifi cantly larger for the fi rst fi ve non-winter 
events than the fi nal fi ve. Th is was likely the result of failures in 
the experimental technology toward the end of the pilot.

In terms of energy conservation, we fi nd that customers on the 
standard rate decreased their energy usage by 0.81 percent when 
provided with information about their energy usage patterns. 
Customers with home energy controllers increased their energy 
usage by 0.43 percent.

Customers with home energy controllers and CPP rates 
decreased their energy usage by 2.84 percent. However, none 
of these results were statistically distinguishable from zero. PUF

Customers in 
a hot and humid 
climate can 
and do respond 
to dynamic 
pricing.
– Sanem Sergici
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What’s been happening to the price of electricity longer term? Since the Labor 

Department’s base period of 1982 – 1984, the Consumer Price Index for electricity has 

increased 84.4 percent as much as the overall CPI. This means the real price of electricity 

has significantly fallen in recent decades. 

Let’s take the ratio of the CPI for electricity to the overall CPI for every March in the 

Labor Department’s data. The data for both CPIs goes back to 1937. That’s eighty-one 

Marches, through March 2017, the latest data. In March 1937, the ratio was 2.105. In 

March 1983, during the base period, the ratio was down to 0.982. Electricity’s real price 

had fallen a lot. In March 2017, the ratio was down to 0.844. Electricity’s real price had 

fallen further.

The ratio in March 2017 of 0.844 was low but not the lowest historically. It was below 

0.800 for the only time for eight years, March 1998 – March 2005. This was the period of 

wholesale power deregulation, and prior to the increases in natural gas costs from Gulf 

Coast storms. A kilowatt-hour was cheapest during these years. 

If you think of electricity as a per unit commodity, then you might say that was when the product was cheapest. If you think 

of electricity as an essential comprehensive service whose total bill matters more to consumers than unit costs, then you might 

say that now is when the service is cheapest. As measured by electric bills as a percentage of consumers’ expenditures, which 

also accounts for consumers’ wealth.

Duquesne Light customer bills 
from simpler times.
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