The Critical Role of Transmission in Clean Power Plan Compliance

PRESENTED TO:

Kinetic Competitive Bidding for Transmission Expansion

PRESENTED BY:

John Tsoukalis

November 17. 2015

"Pop Quiz": What do auto insurance and new transmission have in common?

Answer: Both are expensive to get, but it can be much very expensive to <u>not</u> have them when they are needed.

Fundamentals of the Clean Power Plan

How CPP Affects Transmission Development

Costs of Inadequate Planning and Challenges of Planning Under Uncertainties

Fundamentals of the Clean Power Plan

How CPP Affects Transmission Development

Costs of Inadequate Planning and Challenges of Planning Under Uncertainties

Final Clean Power Plan

Who: Existing Generation Units (EGUs) considered affected units under the 111(d) applicability criteria are grouped into two categories:

- Steam Units: Coal and oil/gas-fired steam turbine units
- NGCCs: Natural gas-fired combined cycle units
- Not Included: Combustion turbine units

When:

- Dec 2015: End of comment period on Federal Implementation Plan and Clean Energy Incentive Program
- Sept 6, 2016: Initial submission of State Implementation Plan (SIP), must request extension to 2018
- Sept 6, 2018: Final submission of SIP
- 2022 2029: Annual EGU standards, with three interim compliance periods
- 2030 and beyond: Final EGU standard

GHG Emission Rate Standards in the Final Rule

Rate reductions are phased-in from 2012 Baseline to 2030 goals. The largest reductions are in MT, ND and WY.

CPP-Mandated Emissions Reductions

- States that are most affected by the rule will likely look to lowest cost approach for compliance.
- CPP does not address transmission and the requirements themselves do not drive transmission.

The most relevant

renewable generation

for CPP compliance

competitiveness for

renewable resources

due to carbon pricing

associated with coal

6 brattle.com

plant retirements

prices

and possibly higher gas

Clean Power Plan – Analyses in Planning

- States would likely choose to comply using the mass-based emissions targets (except for states that have very favorable rate-based standards).
- Trading across states will likely be the chosen approach.
- Compliance will likely be equivalent to adding an emissions cost (in \$/ton) to fossil generation, which will likely increase wholesale electricity prices and fuel switch away from coal generation.
- Thus, most utilities affected by the rule will be assessing the future resource mix in the relevant regions under different future emission costs.
 - This will also require estimating how the coal generation fleet in the relevant region would evolve change over the next 20 years.
- Important to Remember: Transmission is not a "single usage" asset. The value of transmission is always "multi-value."

Fundamentals of the Clean Power Plan

How CPP Affects Transmission Development

Costs of Inadequate Planning and Challenges of Planning Under Uncertainties

How will CPP Drive Transmission Development

- Significant uncertainties remain about how CPP will be implemented.
 - National vs regional/local compliance
 - How emissions will be reduced physically: renewables, EE, coal-to-gas switching
- Coal retirements or coal-to-gas switching likely will be only a modest driver for regional transmission needs and even less of a driver for interregional need.
- Most significant (though uncertain) driver for transmission will be the extent to which low-cost renewable resources are relied upon for emission reduction.
 - Either through RPS-type mandates or by becoming economically more attractive.
 - A national (vs. regional/local) compliance approach, higher gas prices, carbon prices, or PTC/ITC would have significant positive impact.
- Transmission faces a "chicken-or-egg" challenge.
 - Without transmission, significant amounts of additional renewables cannot be developed in low-cost locations.
 - Without significant development of renewables in low-cost locations, existing planning processes will not identify transmission needs.
- Longer-term transmission planning taking into account future uncertainties can inform developers and regulators.

Main Drivers for Transmission

- Serve growing load
- Load diversity: reduce overall reserve margins and generating capacity needed
- Congestion relief/production cost savings: reduce congestion and increasing access to lowest-cost generation that help reduce fuel costs and wholesale energy prices – likely increasing under CPP due to wind/solar
- Access to low-cost renewables: access to regions with low-cost wind, solar, geothermal, and hydro
- Renewable energy and fuel diversity: diversify short and long-term variability of wind, solar, and hydro patterns; diversify fuel mix and cost variances

Increasingly stringent environmental regulations: increase regional "boundaries" to reduce the cost of environmental compliance

Additional Renewables Need to Meet CPP

- We estimate \$25-40 billion of transmission is still needed nationwide to accommodate ramp-up of <u>existing</u> state RPS requirements
- EPA estimates about 85 GW of new wind/renewables to meet CPP needs, implying almost \$50 billion of likely additional transmission needs
- With alternative assumptions, 110 GW of new wind generation and \$60 billion of transmission could be needed to achieve the CPP's emission rate reductions

Estimated U.S. Transmission Investment Driven by Renewables and CPP

		Ramp up of Existing State RPS	EPA Estimate w/ CPP	Brattle Estimate w/ CPP
Estimated Wind Capacity	GW	50-70	85	110
Regional Transmission	\$billion	20-33	40	50
Interconnection related	\$billion	5-7	9	11
Total Transmission	\$billion	25-40	50	60

Sources and Notes:

Brattle Estimate with the CPP assumes 50% of required emission rate reduction achieved through added wind generation.

11 | brattle.com

Renewable Resource Potential

- Potential for and quality of renewable energy resources vary by region.
- Lowest-cost onshore wind resources in the Upper Midwest, Southwest Power Pool, and Texas have a 10-15% capacity factor advantage to other parts of the country, which translates to more than \$20/MWh reduction in the cost of wind generation.
- Southwest has a tremendous amount of solar resources.
- Western states have the highest potential for geothermal.
- There is also significant opportunity to import (or expand exchange trades with) Canadian hydropower.

Increasing Access to and Value of Renewables

Transmission development in conjunction with renewable energy faces a "chicken-and-egg" problem

- Transmission increases the value of renewable sources, and renewables add to the benefits of transmission
 - Ability to sell energy into markets with higher prices and fewer curtailments
 - Transmission can allow for diversification of renewable generation; higher capacity value due to increased geographic footprint and diversified resource mix
 - Reduce ancillary service needs for system balancing

EPA Projection of CPP Impacts

Cumulative Retirements through 2030 by EGU Type and Region

EPA's CPP analysis estimates:

- 100-110 GW of coal plant retirements
- 130 GW of energy efficiency
- 80-85 GW of renewables

							Incremental	Cumulative Coal
			Base Year	Base Capacity RE	Incremental RE to Base	Total 2030 RE Capacity	Energy Efficiency	Retirements in
		Base Year	Source	(excluding hydro)	(including new hydro)	(including new hydro)	(2030)	2030
				(GW)	(GW)	(GW)	(GW)	(GW)
CPP (Rate)	[1]	2012	СРР	98	84	182	132	97
CPP (Mass)	[2]	2012	СРР	98	81	179	132	108

Transmission Investments Driven by Coal Retirements: Likely Relatively Modest

- 60-70 GW of coal retirements have been projected even without EPA's CPP
- EPA estimates 100-110 GW of total coal retirements due to CPP by 2030
- PJM's "local upgrades" approach spent only \$2.4 billion for 14 GW of coal retirements
- U.S. transmission needs driven by coal retirements based on PJM experience
 - \$10 billion without CPP
 - \$20 billion with CPP
- A more forward-looking regional, interregional, or multi-value approach would likely be more cost-effective in the long run.

	EPA Projected Coal Retirements (GW)	Potential Transmission Investment (\$ billion)
Base Case (w/o CPP)	60	\$10
Under the CPP	130	\$20

Estimated Transmission Needs Driven by Coal Retirements through 2030

Transmission Needs from Gas Capacity Additions

Cheaper to site gas capacity near shale plays – no pipeline needed, low-cost fuel

- Early experience in PJM: CCs built close to gas
- Gas-fired generation needed in areas with high coal retirements but little shale gas
- Benefits from connecting with renewables-rich areas; gas-fired generation can be used for system balancing

Fundamentals of the Clean Power Plan

How CPP Affects Transmission Development

Costs of Inadequate Planning and Challenges of Planning Under Uncertainties

Key Barriers to More Effective Grid Planning

There are 3 key barriers to identifying and developing the most valuable transmission infrastructure investments:

- Planners and policy makers do not consider the full range of benefits that transmission investments can provide and thus understate the expected value of such projects
- Planners and policy makers do not account for the high costs and risks of an insufficiently robust and insufficiently flexible transmission infrastructure on electricity consumers and the risk-mitigation value of transmission investments to reduce costs under potential future stresses
- Interregional planning processes are ineffective and are generally unable to identify valuable transmission investments that would benefit two or more regions.

Key Barriers to More Effective Grid Planning

If not addressed, barriers to effective regional and interregional transmission planning (faced nation-wide) will lead to:

- Lost opportunities to identify and select alternative infrastructure solutions that are lower-cost or higher-value in the long term than the (mostly reliability-driven) projects proposed by planners
- An insufficiently robust and flexible grid that exposes customers and other market participants to higher costs and higher risk of price spikes

Higher overall cost of delivered electricity and public policy goals from underinvestment in transmission infrastructure

The Full Range of Transmission-Related Benefits

- Transmission accounts for 10% of customer bills but greatly affects at least half of the other 90%
- Omitting many transmission-related benefits (or assuming they are zero) ignores the costs and risk imposed on customers through a higher overall cost of power

"Checklist" of Transmission Benefits

Benefit Category	Transmission Benefit (see 2013 WIRES paper)		
Traditional Production Cost Savings	Production cost savings as currently estimated in most planning processes		
	a. Impact of generation outages and A/S unit designations		
1. Additional Production Cost	b. Reduced transmission energy losses		
Savings	c. Reduced congestion due to transmission outages		
-	d. Mitigation of extreme events and system contingencies		
	e. Mitigation of weather and load uncertainty		
	f. Reduced cost due to imperfect foresight of real-time system conditions		
	g. Reduced cost of cycling power plants		
	h. Reduced amounts and costs of operating reserves and other ancillary services		
	i. Mitigation of reliability-must-run (RMR) conditions		
	j. More realistic "Day 1" market representation		
2. Reliability and Resource Adequacy	a. Avoided/deferred reliability projects		
Benefits	b. Reduced loss of load probability or c. reduced planning reserve margin		
	a. Capacity cost benefits from reduced peak energy losses		
3. Generation Capacity Cost Savings	b. Deferred generation capacity investments		
	d. Access to lower-cost generation resources		
4 Market Repolits	a. Increased competition		
4. Warket benefits	b. Increased market liquidity		
5 Environmental Repofits	a. Reduced emissions of air pollutants		
5. Environmental benefits	b. Improved utilization of transmission corridors		
6. Public Policy Benefits	Reduced cost of meeting public policy goals		
7. Employment and Economic	Increased employment and economic activity;		
Stimulus Benefits	Increased tax revenues		
8. Other Project-Specific Benefits	Examples: storm hardening, fuel diversity, flexibility, reducing the cost of future transmission needs, wheeling revenues, HVDC operational benefits		

Illustrative Example: Considering <u>All</u> Transmission Benefits is Important

Estimated Annual Base Case Benefits and Costs of CA Palo Verde-Devers 2 Line

Inadequate Transmission Imposes High Risks

Most transmission planning efforts do not adequately account for short- and long-term risks and uncertainties affecting power markets.

- Economic transmission planning generally evaluates only "normal" system conditions.
 - Planning process typically ignores the high cost of short-term challenges and extreme market conditions triggered by weather, outages, fuel supply disruption, unexpected load growth.
- Planning does not adequately consider the full range of long-term scenarios and does not capture the extent to which a less robust and flexible transmission infrastructure will foreclose lowest-cost options.
- Costs of inadequate infrastructure typically are not quantified but, under some circumstances, can be much greater than the costs of the transmission investments.

Planning for "Average" Conditions Can Lead to Very Disappointing Results

See below for details and examples on why we underestimate risks at the face of uncertainty: <u>http://web.stanford.edu/~savage/flaw/Article.htm</u> <u>http://flawofaverages.com/</u>

Illustrative Example: Considering the <u>Range and</u> <u>Distribution</u> of Transmission Benefits is Important as Well

Range of Projected Societal Benefits of PVD2 Project Compared to Project Costs

Ineffective Inter-Regional Transmission Planning

Divergent criteria result in "least-common-denominator" planning approaches create significant barriers for transmission between regions.

- Experience already shows that few (if any) interregional projects will be found to be cost effective under this approach.
- Multiple threshold tests create additional hurdles.

Planning processes need to be improved to avoid this "least common denominator" outcome by evaluating interregional projects based on their <u>combined benefits</u> across all regions.

Ineffective "Compartmentalized" Planning

Experience from around the country shows that most planning processes compartmentalize needs into "reliability," "market efficiency," "public policy," and "multi-value" projects – which in turn fails to identify valuable projects.

- Compartmentalizing creates additional barriers at the interregional level by limiting projects to be of the same type in neighboring regions (see MISO-PJM example).
- It eliminates many projects from consideration simply because they don't fit into the existing planning "buckets."

Scenario-Based Transmission Planning

1. Identifying Future Trends, Drivers and Uncertainties

 Industry experts from within and outside of the power industry develop views on a range of future trends, drivers, and uncertainties

2. Developing Future Scenarios

- Develop future scenarios based on the trends, drivers and uncertainties identified
- Ensure that each scenario is internally consistent and captures a sufficiently wide range of future states of the world

3. Transforming Future Scenarios into Planning Assumptions

 Translate the qualitative descriptions of the future scenarios to specific assumptions that are used in transmission planning

4. Simulate the Grid under each Future Scenario

- Develop power flows for each future scenario
- Compare the size and timing transmission needs across scenarios

Key Driver	Current	Stagnation	Blue Skies	
Economic Conditions	Base	Low	High	
Sector Growth	Base	Low	High	
Commodity Prices	Base	Low	High	
Environmental Policy	Base	Low	Low	
Electricity Policy	Base	Base	Low	

I	ine R	egion	ISD	Cost	
Ą.	NE		2019	¢x xxx xxx	
3	Line	Region	ISD	Cost	
2	A	NE	3010	60 VVV	vvv
	в	Line	Region	ISD	Cost
	С	A	NE	2019	\$X,XXX,XXX
	_	в	Central	2025	\$X,XXX,XXX
		С	South	2027	\$X,XXX,XXX

28 | brattle.com

Example: ERCOT Long-Term System Assessment

Table 3.1: 2014 | TSA Key Drivers Developed by ERCOT Stakeholders

14510 0.11. 201-		spearby Encoor oranemoraero		
Key Drivers	Description			http://www.brattle.com/news-and-
Economic Conditions	U.S. and Texas economy: regional and state-wide population, oil			knowledge/news/brattle-consultants-
	& gas, and industrial gr	owth; Liquefied Natural Gas ((LNG) export	assist-ercot-in-scenario-planning-and-
	terminals: urban/suburb	oan shifts: financial market co	nditions: and	improving-its-long-term-transmission-
	business environment	,	,	planning-process
Environmental	Environmental regulatio	ns, including air emissions sta	ndards (e.g.,	planning-process
Regulations and Energy	ozone MATS (SAPR)	GHG regulations, water regu	lations (e.g.,	
Policy	316(b)), and nuclear s	afety standards: energy polic	ies including	
,	renewable standards	Table 3.2	: 2014 LTSA 9	Scenarios Developed by Stakeholders
	mandated fuel mix sol	Candidate Scenarios	Descriptio	n
Alternative Generation	Capital cost trends for	Current Trends	Trajectory of	f what we know today (e.g., LNG export terminals and
Resources	improvements affectin	current frends	West Toyac	arowth prolonged high oil prices)
Resources	capacity additions st	Clobal Decession	Cignificant r	aduction in economic activities in the U.C. and abread
	(DG) costs and financi	Global Recession	Significant	eduction in economic activities in the 0.5. and abroad
Natural Gas and Oil	Cas prices are a function	High Economic Growth	Significant p	opulation and economic growth from all sectors of the
Drices	LNC ovports industris		economy (a	ffecting residential, commercial, and industrial load)
FILES	prices are dependent	High Efficiency/High	Reduced <i>ne</i>	t demand growth due to increase in distributed solar,
	spread of borizontal d	DG/Changing Load	cogeneratio	n and higher building and efficiency standards
	offect drilling locations	Shape		
Transmission	New policies ground t	High Natural Gas	High domes	tic gas prices
Permission	new policies around t	Prices		
Regulation and Policies	Teighboring regions, al	Stringent	On top of cu	irrent regulations, the Environmental Protection Agency
Generation Resource	Economically determin	Environmental (EPA) also		regulates GHG emissions. Federal or higher Texas
Adequacy Standards	flexible resource requir	Regulation/Solar renewable		standards. More stringent water regulations. Texas
End-Use/New Markets	End-use technologies	Mandate	legislative	mandate on utility-scale and distributed solar
	demand-response; ch		developmen	t
	increase interest in mic	High ING Exports	Significant	additional construction of liquofied natural gas (LNG)
Weather and Water	May affect load growt		torminals (h	avond Current Trends)
Conditions	technology mix, aver	High Custom Desilion and	Certainais (D	evolu current rienus)
	extreme weather event	nign System Resillency	Severe clin	nate and system events leading to more stringent
			reliability an	a system planning standards
		Water Stress	Low water a	Ivailability
		Low Global Oil Prices	Sustained lo	w oil prices

Interpretation and Uses of the Scenario-Based Transmission Planning

- Future scenarios are used to evaluate the potential future transmission needs (including location, size and timing).
- A scenario does <u>not</u> represent a deterministic future that will occur. Instead, together the scenarios cover the range of plausible futures.
- Some planners are inclined to assign "probabilities" to each future scenario, inevitably assigning "Current Trends" the highest probability because it is developed with "known and knowable facts" today.
- Best to not assign probabilities, instead, carry all scenarios to market simulations and evaluate the transmission projects needed under all scenarios
- Assess if certain projects
 - (1) Are needed in multiple/most scenarios;
 - (2) Mitigate the risk of very high cost outcomes;
 - (3) Are better long-term solutions than smaller-scale projects that only address the most immediate needs.
- Scenario-based transmission planning can also help evaluate the types of public policies that transmission planners may want to support.

Final Word

- Clean Power Plan is only a version of the future where transmission solutions could help regions to comply with the rule in a cost effective manner.
- Ultimately, transmission are multi-purpose and multi-value.
- Much work is needed in considering all of the value of transmission when considering a cleaner power sector for the future, so must start now.
- Regulators should consider the cost of delivered power without the needed transmission.
- Scenario-based planning could help all stakeholders develop the longterm lowest cost solution.

Speaker Bio and Contact Information

John Tsoukalis

Associate JohnTsoukalis@brattle.com 202.955.5050 office 202.419.3376 direct Note:

The views expressed in this presentation are strictly those of the presenter and do not necessarily state or reflect the views of *The Brattle Group, Inc.*

Mr. John Tsoukalis is an Associate at The Brattle Group with experience across a board range of issues in electric utility economics. These include electric utility strategic planning, manipulation across electricity markets, and electric transmission development. He has assisted electric utility clients in developing their strategic plans for participation in wholesale markets and in confronting regulatory uncertainty. John is engaged with utility clients to determine their regulatory exposure due to bidding practices in the wholesale electricity markets. He has helped develop tests to detect the presence of uneconomic behavior and to assess the potential price distortion caused by this behavior. He is assisting several clients in defending against investigations or enforcement actions for allegedly manipulative behavior. He has supported the development of testimony to assist regulatory agencies with their design of appropriate tariff provisions to properly allow for adequate cost recovery while identifying and mitigating potentially manipulative behavior.

About The Brattle Group

The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governmental agencies around the world.

We combine in-depth industry experience, rigorous analyses, and principled techniques to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

Our services to the electric power industry include:

- Climate Change Policy and Planning
- Cost of Capital & Regulatory Finance
- Demand Forecasting & Weather Normalization
- Demand Response & Energy Efficiency
- Electricity Market Modeling
- Energy Asset Valuation & Risk Management
- Energy Contract Litigation
- Environmental Compliance
- Fuel & Power Procurement
- Incentive Regulation

- Market Design & Competitive Analysis
- Mergers & Acquisitions
- Rate Design, Cost Allocation, & Rate Structure
- Regulatory Compliance & Enforcement
- Regulatory Strategy & Litigation Support
- Renewables
- Resource Planning
- Retail Access & Restructuring
- Strategic Planning
- Transmission

Offices

NORTH AMERICA

New York

San Francisco

Washington, DC

Toronto

Madrid

EUROPE

London

Rome