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  In this presentation, we discuss methodologies for forecasting 
peak demand. 
 
  Any proposed methodology should be evaluated by its accuracy. 

 
  An accurate model is just as likely to over-forecast as it is to 
under-forecast peak demand in a given year. 

Forecasting peak demand 
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  Annual peak demand is anomalous and the forecasting 
methodology must take this into account. 
 
  Current approaches largely rely on OLS, which is best suited to 
forecasting average consumption and not peak demand: 
▀ OLS with one data point for each annual peak 
▀ OLS on a subset of relatively extreme days 

 
  We propose Quantile Regression (QR) as a superior solution. 
 
  We compare QR and OLS methods of the same functional form 
using 32 “utilities” in a meta-study. 

Motivation for the study 
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  We model  
▀ Daily maximum hourly demand using all summer (May-September) 

days 
  Using 

▀ Monthly energy 
▀ Maximum daily temperature (contemporaneous and lag) 
▀ Minimum daily temperature (contemporaneous and lag) 
▀ Month fixed effects 
▀ Day of week fixed effects 
▀ Dummy variable for weekday holiday 
▀ Quarterly index of economic activity* 
▀ Daily humidity* 
▀ Monthly CDD and HDD* 

  * when available 

Data (1999—2013) 
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  Daily maximum demand is predicted separately by utility and 
the same functional form is used for all utilities. 
 
  We estimate QR and OLS using data from 1999-2008 (the “in 
sample” or “estimation” period). 
 
  We evaluate the methods using the 2009-2013 data (the “out of 
sample” period). 
 
 
 

Approach 
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  We can decompose maximum demand into two parts: 
▀ Predictable demand 

We can use weather, sales, and other variables to predict maximum 
demand. 

▀ Unpredictable shock 
There are idiosyncratic components of demand that are not 
predictable. 

 

Decomposing maximum demand 
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  The day establishing peak demand likely has large values for 
both of these components. 
▀ Many days in the summer exhibit severe weather; the one with the 

highest demand will be the one with the highest demand shock. 
▀ OLS can be used to create forecasts for days with large predictable 

demand. 
▀ OLS cannot be used to create forecasts for days with large shocks. 
▀ QR can be used to create forecasts for days with both large 

predictable demand and large shocks. 
 
  An accurate peak demand model must incorporate both 
components. 

OLS versus QR 
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  OLS 
▀ For a given level of the predictors, what is the average level of 

demand that is to be expected? 
▀ This model incorporates a shock of size 0 (the average). 

  QR 
▀ QR requires specifying a percentile of interest; 90%, say. 
▀ For a given level of the predictors, what is the 90th percentile of 

demand that is to be expected? 
▀ This model incorporates a 90th percentile shock. 

 

The questions that OLS and QR answer 
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  The quantile is estimated to provide accurate in-sample 
predictions of peak demand. 

 
  The further the estimated quantile is from 50, the greater the 
difference between the QR and OLS models. 

 

Quantiles 
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  For each year and each utility, we compare: 
▀ Highest level of hourly demand predicted by the model 
▀ Highest level of hourly demand actually witnessed (non-coincident) 

 
  We provide errors for two sets of predictions: 

▀ In sample prediction 
▀ Oracle forecasts 

These out-of-sample forecasts use the true values of the predictors. 

Evaluation 
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  Across utilities, QR: 
▀ Has a mean out-of-sample prediction error of 0.05% compared to  

-4.82% for OLS 
▀ Has a mean out-of-sample absolute prediction error of 3.05% 

compared to 5.28% for OLS, a reduction of 42% 
 

  By utility, QR: 
▀ Has a negative MPE for 15 of 32 utilities, while OLS has a negative 

MPE for 30 of 32 utilities 
▀ Has a smaller MAPE than OLS for 24 out of 32 utilities 
▀ Has a median MAPE that is 25% smaller than that for OLS 

 
 

Performance summary 
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  Peak demand is a function of predictable demand and 
unpredictable shocks. 
▀ OLS only considers the predictable component of demand. 
▀ Shocks are larger on annual peak days compared to non-peak days. 
▀ QR incorporates the size of the shock term in addition to the 

predictable component. 
 
  We see that 

▀ The OLS model generally under-predicts peak demand. 
▀ The QR model generally provides an accurate estimate of peak 

demand. 
 
  These results generally hold across utilities. 

Results 
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Forecast intervals 

  We also develop a bootstrapping method to produce forecast 
intervals for peak demand. 
 

95% interval  
coverage 

In sample 95.1 

Oracle 88.1 
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  Peak demand days are differentiated from other high demand 
days by the presence of extreme shocks to demand. 
 
  OLS does not account for this distinguishing feature of these 
days and the approach’s predictions are biased downward. 
 
  Focusing on days with high levels of predictors (rather than high 
levels of shocks) does not counteract this bias. 
 
  Quantile regression can incorporate extreme shocks to better 
predict peak demand. 
 

Conclusions 
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  The Brattle Group provides consulting and expert testimony in 
economics, finance, and regulation to corporations, law firms, 
and governments around the world. We aim for the highest level 
of client service and quality in our industry. 
    
  We are distinguished by our credibility and the clarity of our 
insights, which arise from the stature of our experts, affiliations 
with leading international academics and industry specialists, and 
thoughtful, timely, and transparent work. Our clients value our 
commitment to providing clear, independent results that 
withstand critical review.  
 
 

About Brattle 
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■ Antitrust/Competition 
■ Commercial Damages 
■ Environmental Litigation and Regulation 
■ Forensic Economics 
■ Intellectual Property 
■ International Arbitration 
■ International Trade 
■ Product Liability 
■ Regulatory Finance and Accounting 
■ Risk Management 
■ Securities 
■ Tax 
■ Utility Regulatory Policy and Ratemaking 
■ Valuation 

 

■ Electric Power 
■ Financial Institutions 
■ Natural Gas 
■ Petroleum 
■ Pharmaceuticals, Medical Devices, and 

Biotechnology 
■ Telecommunications and Media 
■ Transportation 

Our practices 
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