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1. OBJECTIVE 

An increasing number of utilities across the United States have deployed or are planning to 

deploy behavior-based energy efficiency programs.  Just as these programs use a relatively new 

approach to driving efficiency at utility scale, new measurement approaches are also needed.  

There has been recognition at the regulatory and advocacy level that an experimental design 

approach – that is, the use of statistically equivalent treatment and control groups – renders 

rigorous results at high confidence when properly executed.
1
 Because of this growing interest in 

behavioral efficiency solutions and a limited number of resources detailing their implementation, 

the need for a document that discusses best practices for designing and evaluating behavior-

based programs has become increasingly evident.  

 

This guideline document aims to fill in this gap and lays out the main principles of scientific 

research that yields a statistically valid program design and program impact metrics.  The 

measurement and verification principles in this document may apply to a broad group of 

residential energy efficiency behavioral programs that promote efficient usage behavior, 

customer engagement, and individual energy management.  More specifically, these programs 

may have one or more of the following features: 

 

• Normative comparison of a customer’s usage against comparable customers in the same 

geographical area; 

• Targeted conservation and peak reduction tips based on an analysis of a customer’s past 

usage and individual profile; 

• Encourage participation in other utility programs based on previous usage patterns and 

individual consumer profile. 

 

It is important to note that the objective of this document is not to develop a comprehensive 

measurement and verification protocols document that addresses all possible program design and 

evaluation decisions one can make.  Nevertheless, it is our intent to identify the best practices in 

program design and impact evaluation and provide guidance to utilities in their efforts to design 

statistically valid programs which will yield reliable impact metrics. 

 

2. PROGRAM DESIGN 

2.1. Ensure Internal and External Validity 

To be credible and useful to policy makers, programs need to have both internal and external 

validity.  “Internal validity” means that a cause and effect relationship can be established 

between the various treatments being tested and the variables of interest such as peak demand 

                                                 
1
  Decision 10-04-029 (April 8, 2010) from the California Public Utilities Commission recognizes behavior-

based programs that measure savings ex-post and utilize experimental design as eligible efficiency 

resources to count toward statewide efficiency goals. The National Action Plan for Energy Efficiency 

(NAPEE) also describes different approaches to applying experimental design to measures to efficiency 

measures in their discussion of large-scale data analysis (See: Model Energy Efficiency Program Impact 

Guide, p. 4-9, November 2007).  
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and overall energy consumption.  The effect of all other variables needs to be purged.  “External 

validity” means that the program results can be extrapolated to the population of interest.  Both 

require careful design although it is generally easier to ensure internal validity than to ensure 

external validity. 

 

To ensure internal validity, the “gold standard” of program design stipulates that every treatment 

that is being tested should also have a control associated with it so that a scientifically valid “but 

for” world can be constructed from which deviations can be successfully measured
2
.  In other 

words, cause-effect relationships cannot be inferred with any precision and any conclusions 

derived from the program may be subject to the charge that they simply measure spurious 

correlation without this control.  It is also likely that genuine cause-effect relationships (e.g., 

conservation tips lead to lower usage by X percent) may not be measured accurately because 

other factors such as a changing economy or weather may obscure the true relationship.  The best 

way to create a “but for” environment is to select a matching group of customers who can serve 

as a proxy for the behavior of the treatment group customers.  In addition, to further anchor the 

measurements, it is best to have pre-treatment data on both the control and treatment groups as 

well as the treatment-period data on both groups of customers.   

 

In the past, programs have been carried out without matching control groups and sometimes with 

no control groups at all.  Others have been conducted with control groups but with no pre-

treatment measurements.  All such inadequacies impair the internal validity of the programs to 

varying degrees.  Without a control group in the design, it is impossible to control for non-

treatment variables that change between the pre-treatment and treatment periods (such as the 

economy, or general changes in attitudes toward energy use brought about by other exogenous 

factors).  Without pre-treatment data, it is difficult to know if the treatment and control groups 

were comparable or not before the treatment was introduced.  If systematic pre-treatment 

differences exist, they suggest that there may be a self-selection bias in the sample that needs to 

be dealt with.  Having a randomized control group and sufficient amount of pre-treatment data 

for both treatment and control groups could address majority of these concerns.    

 

A program must also have external validity so that its conclusions are transferable to the 

population at large.  In the case of a behavior-based program, it will be useful to know if such 

programs will ultimately be offered on a universal basis, a default basis with opt-out provisions, 

or an opt-in basis.  The sampling strategy for a program will vary across these three scenarios.  

For example, if universal deployment is contemplated, then both the control and treatment 

groups should be chosen randomly.  On the other hand, if an opt-in deployment is envisioned, 

then opt-in sampling would be appropriate for both groups.  

 

These are the general principles of program design to ensure internal and external validity of 

results. As with most things in the real world, they serve as guidelines and not mandates.  

Utilities will need to temper these principles in execution given their time and resource 

constraints.   

                                                 
2
  For a discussion of the gold standard of the program design, see Ahmad Faruqui, Ryan Hledik, and Sanem 

Sergici, “ Piloting the Smart Grid,” Electricity Journal, Aug./Sept. 2009. 
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2.2. Determine Sampling Frame and Program Design Approach 

The first step before designing a program is to determine the objective of the program.  The 

objective should clearly state the: (i) treatment(s) that will be applied; (ii) metrics that will be 

measured, and (iii) population about which inferences will be made.   

 

Once the objectives have been clearly stated, a “sampling frame” must be developed.  A 

sampling frame refers to a population from which a sample will be selected to participate in a 

program and expected to yield inferences about the population from which it originates.  For 

instance, if a utility is interested in measuring the impact of conservation tips on reducing usage 

for high-usage homes, then the sampling frame consists of the population of high-usage 

customers.  

 

After determining the sampling frame, the next step is to determine the “program design 

approach.”  Selection and implementation of a design approach have important consequences for 

internal and external validity of a program, therefore should be decided upon by considering how 

a given approach would affect a program’s internal and external validity.  Most behavioral-based 

efficiency programs are likely to be offered on a universal basis to a population or a sub-

population when it is time to offer them as a full-scale program.  In that case, the most suitable 

design approach is a “randomized controlled trial" (RCT) approach in which participants from a 

sampling frame are randomly allocated to treatment and control groups.  By ensuring that the 

participants are selected from the sampling frame using an approach that best approximates the 

participant mix of a full-scale implementation, the design approach meets the external validity 

requirement.  By randomly allocating participants to treatment and control groups and therefore 

avoiding potential selection biases, the recruitment approach meets the internal validity 

requirement (although some additional analysis may still be needed to make sure that the control 

and treatment groups are comparable even with the randomization). 

2.3. Determine Impact Evaluation Method  

After the sampling frame and program design approach are determined, the next step is to decide 

on the impact evaluation methodology.  It is important to determine the impact evaluation 

methodology relatively early on during the program design process, as it has implications for 

data requirements as well as sample sizes required for statistically valid results.  All potential 

methodologies are essentially based on some form of a mean comparison between treatment and 

control groups, and there are two main variations based on the frequency of measurements: 

 

1. Studies with a single-measurement of the outcome:  these studies employ an approach 

that is based on comparison of the means between treatment and control groups, 

measured only once after the introduction of a treatment. 

2. Studies with repeated-measurements of the outcome:  these studies are also based on 

comparison of the means between treatment and control groups, but measured at multiple 

times both before and after the introduction of a treatment. 

 

In studies with repeated measurements taken at points preceding and following a treatment, it is 

possible to achieve a substantial increase in efficiency (variance reduction) due to the correlation 

between measurements at different time points as compared to studies with single measurement.  
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Therefore, in this principles document, we will make the very probable assumption that it is 

administratively feasible to take multiple measurements for control and treatment groups both 

before and after the treatment period.  The longer a program is run, the more the treatments can 

be tested in it and the greater the confidence one can have in the results.  However, it is rarely 

possible to run these programs for extended periods of time due to financial and administrative 

constraints.  For behavior-based energy efficiency programs, it is important to allow the 

program to run at least one full year, so that seasonal effects can be properly captured in the 

data.  In the same fashion, it is ideal to capture at least one full year of “pre-treatment” data so 

that it can be examined against “post-treatment” data and comparisons can be made on a similar 

seasonal basis.  Our discussion of the data analysis methods in Section 3 of this document will 

also be based on these assumptions. 

2.4. Determine the Sample Design 

Once the impact evaluation approach and data requirements have been determined, statistical 

power analyses must be conducted to determine the treatment and control group sample sizes 

required to achieve a pre-determined statistical precision level.  

 

The following factors determine the sample sizes required in a program: 

 

• Significance level of the test (Type I error) 

• Power of the test (1-Type II error) 

• One-sided or two-sided hypothesis testing 

• Ratio of treatment and control group sizes 

• Number of the pre-treatment measurements planned in a repeated-measure study 

• Number of the post-treatment measurements planned in a repeated-measure study 

• Correlation between pre-treatment measurements in a repeated-measure study 

• Correlation between post-treatment measurements in a repeated-measure study 

• Correlation between pre-treatment and post-treatment measurements in a repeated-

measure study 

 

It is possible to obtain substantially different sample sizes, which would meet given statistical 

precision levels and detection limit requirements, based on the selected impact evaluation 

approach and frequency of measurements in both the pre- and post-treatment periods.  Table 1 

compares sample sizes that would detect 1% change in the average usages of the treatment 

customers with 90% statistical power and 95% statistical confidence level.  The appendix 

presents the sample size formula used in these calculations.   
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Table 1: Comparison of Sample Sizes: Single-measurement vs. Repeated-measurement 

(Statistical Power=90%, Confidence Level=95%) 

 

One-sided Hypothesis Testing

Ass
um

ptio
ns Mean Usage (kWh/mo)=1,439 St. Deviation of Usage (kWh/mo)=779.2

Impact Detection Limit = 1%

One-sided Test

C/T=1 C/T=2 C/T=1/2

Treatment Control Treatment Control Treatment Control

Pre=0, Post=1 50,220 50,220 37,665 75,330 75,330 37,665

Pre=6, Post=6 7,701 7,701 5,776 11,552 11,552 5,776

Pre=12, Post=12 5,357 5,357 4,018 8,036 8,036 4,018

Two-sided Hypothesis Testing

Ass
um

ptio
ns

Ass
um

ptio
ns Mean Usage (kWh/mo)=1,439 St. Deviation of Usage (kWh/mo)=779.2

Impact Detection Limit = 1%

Two-sided Test

C/T=1 C/T=2 C/T=1/2

Treatment Control Treatment Control Treatment Control

Pre=0, Post=1 61,618 61,618 46,213 92,426 92,426 46,213

Pre=6, Post=6 9,448 9,448 7,086 14,172 14,172 7,086

Pre=12, Post=12 6,573 6,573 4,930 9,860 9,860 4,930

Notes:

1- Our calculations assume r0=0.73, r1=0.71, r01=0.69

    2- We use the "change" method to calculate the adjustment factors for the standard errors.  See Appendix for 

    a discussion of this method.

Ass
um

ptio
ns

 
 

As Table 1 clearly indicates, a researcher who chooses to employ a single-measurement mean 

comparison analysis for the impact evaluation of the program would need to recruit 50,220 

customers for each of the treatment and control groups assuming that she chooses to have equal 

sample sizes for both groups and tests a one-sided alternative hypothesis.  On the other hand, this 

researcher would only need to recruit 5,357 customers for each of the treatment and control 

groups to meet the same criteria, if she chooses to employ a repeated-measurement mean 

comparison analysis and collects 12 months of pre-treatment and post-treatment usage data for 

each of the treatment and control customers in her sample.  These sample sizes would allow the 

researcher to detect changes in the mean usage which are greater than or equal to 1% with 90% 

statistical power and 95% confidence.  As the detection threshold becomes smaller, i.e., 0.5%, 

the sample sizes that are required to detect these impacts with the same statistical power and 

confidence interval criteria become larger.  Figure 1 demonstrates the trade off between the 

sample size requirement and the detection limit, assuming 12 pre-treatment and 12 post-

treatment data points are available for the analysis.  
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Figure 1: Trade-off between Sample Size and Impact Detection Threshold 

 

Total Sample Size vs. Impact Detection Threshold (C/T=1)

108 430
1,716

2,680

4,762

42,856

10,714

10.0% 5.0% 2.5% 2.0% 1.5% 1.0% 0.5%

Impact Detection Threshold

S
a

m
p

le
 S

iz
e

Total Sample Size

 
Note: These calculations employ the same underlying assumptions in Table 1 and report the total sample sizes 

(C+T) assuming 12 months of pre- and post-treatment data are available.  

 

It is also important to note that the treatment and control groups do not need to be equal in size in 

a program.  More observations (regardless of being control or treatment) increase the amount of 

available information which, in turn, decrease the standard deviation and improve the power of 

the test and significance level of the analysis.  It is preferable to collect more treatment 

observations in a program, but the efficiency of the analyses increases from the increases in 

either of control and treatment group sample sizes.  Therefore, if increasing the control group 

size is "cheaper" than increasing the treatment group size, it is acceptable to have more control 

customers than treatment customers in the design.  For instance, in Table 1, "C/T=2" case 

represents a design in which the number of the control customers is twice that of the treatment 

customers.  Alternatively, there may be situations in which increasing the control group size is 

more expensive than increasing the treatment group sample size.  In Table 1, "C/T=1/2" case 

represents a design in which the number of the control customers is half of that of the treatment 

customers.  In all cases, it is still possible to detect 1% change in mean usage levels with 90% 

statistical power and 95% confidence.  

 

Another important factor is the selection of a hypothesis testing rule.  In a one-sided statistical 

test, the values for which we can reject the "null hypothesis of zero impact" lie on one side of the 

probability distribution.  For instance, if a researcher is interested in knowing whether a 

treatment in her research led to a statistically significant reduction in usage, then she would 
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want to use a one-sided test.  However, if she is interested in determining whether the impact of 

treatment is not zero (regardless of a decrease or an increase), then she would want to use a two-

sided test.  The choice between a one-sided and a two-sided test is determined by the purpose of 

the program at hand and the questions a researcher wants to answer.  

2.5. Determine the Data Requirements 

Data requirements of a study will be determined based on the selected impact evaluation 

approach and practical considerations of a program. The following list summarizes the data 

requirements for the impact evaluation approach recommended in this guideline document:  

 

1. Monthly kWh usage data for each of the treatment and control customers for at least 3 

months and preferably 12 months prior to the treatment period. 

2. Monthly kWh usage data for each of the treatment and control customers for at least 12 

months during the treatment period. 

3. Meter reading date for each of the customers if the billing is based on billing cycles. 

4. Tariff designation. 

5. Effective treatment start date. 

6. For customers leaving the program, the date they left. 

7. Socio-demographic and appliance data (if available, this data can be used to further 

assess whether the treatment and control groups are balanced in their observable 

characteristics) 

8. Weather data based on weather station(s) that are in the closest geographical proximity to 

the program customers   

 

For monthly kWh usage data collection, it is important to make sure to identify the billing cycle 

for each of the customers if the bills are prepared on a bill cycle rather than on a calendar month 

basis.  Capturing this data will allow the researchers to align the weather variables, i.e., cooling 

degree days and heating degree days more closely with the usage variables. 

 

3. MEASUREMENT AND VERIFICATION 

3.1. Recommended Impact Evaluation Approach 

It is possible to estimate precise load impacts using a single-measurement study design by 

measuring treatment and control group usages once in the post-treatment period, provided that 

sufficiently large sample sizes are available.  These estimations employ a “test of differences” of 

the mean usages of control and treatment groups.  If the difference in the mean values is found to 

be statistically significant, then the treatment is found to yield an observable effect in the usages 

of the treatment customers.  

 

If it is feasible to measure treatment and control group usages once in the pre-treatment period 

and once in the post-treatment period, the load impacts can be measured more precisely 

compared to the single measurement case with the added benefit of requiring smaller sample 

sizes.  These estimations employ a “difference-in-differences” approach which is based on 

netting out the mean difference between treatment and control groups in the pre-treatment period 
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from the mean differences between treatment and control groups in the post-treatment period.  If 

the difference in differences of the mean values is statistically significant, then the treatment is 

found to yield an observable effect in the usages of the treatment customers.  

 

Finally, if it is feasible to obtain multiple measurements of treatment and control group 

customers both in the pre-treatment and treatment periods, then the precision of the impacts can 

be improved even more with much smaller sample sizes.  These estimations employ a “panel data 

or cross-sectional time-series” estimation technique which is based on following and comparing 

the same individuals over time as well as comparing different individuals at a given point in time 

through regression models.  Panel regressions also allow for the testing of a broad range of 

hypotheses in addition to the estimation of the load impacts provided that the program is run and 

measurements are taken over a sufficiently long time period.  For example, do the treatment 

impacts persist over time?
3
  Do the treatment impacts vary seasonally? 

 

For the purposes of this document, we will only discuss the panel data regression analysis 

technique.  The motivation behind this choice is several-fold: 

 

• Most behavior-based programs are designed to run at least one year.  This implies that 

repeated measurements on the treatment and control group data will be readily available. 

• Behavior-based programs require billing data at a minimum and therefore they are 

possible to administer using a utility’s legacy metering and billing systems.  This also 

implies that several months’ worth of pre-treatment data will be available for both 

treatment and control group customers. 

• Since several repeated measures of pre-treatment and treatment data are likely to be 

available for both treatment and control group customers, the panel data estimation would 

yield the most precise impact estimate at much lower sample sizes for both treatment and 

control groups.  

• It is possible to explicitly control for the weather variables within the panel data 

regression framework to remove weather impacts on customers’ usage behaviors and 

therefore reveal the true impact of the treatment.  

• It is possible to account for the impacts of time-invariant unobservable variables on the 

usage levels through a procedure known as “fixed-effects” estimation which is embedded 

in the panel data regression approach.  These variables, if remain uncontrolled, lead to 

biased estimates of the load impacts.  

3.2. Compare Treatment and Control Groups in the Pre-Treatment 

Period 

As discussed in Section 2.3, most behavior-based efficiency programs are likely to be offered on 

a universal basis to a population or a sub-population when it is time to offer them as full-scale 

programs.  Moreover, existing experience with these programs show that a very small number of 

the customers opt-out of the program after their initial enrollment.
4
  In that case, the most 

                                                 
3
  OPOWER programs assume a single-year measure life.  However, there may be some permanent behavior 

changes that can be empirically explored. 
4
  Previous research shows that the opt-outs are in the range of 1 to 2 percent.  See, for example, Hunt 

Allcott. Social Norms and Energy Conservation. MIT and NYU.  October 10, 2009, and Ian Ayres et al. 
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suitable design approach is a "randomized controlled trial" approach in which participants from a 

sampling frame are randomly allocated to treatment and control groups.  The expectation as a 

result of the random allocation is that the treatment and control groups would be comparable to 

each other in terms of their usage, socio-demographic, and appliance characteristics.  However, 

despite the randomization, it is still a good practice to assess the comparability of the treatment 

and control groups in the pre-treatment period before the treatment customers started to 

participate in the behavior-based energy efficiency programs.  We recommend the following 

analyses for this assessment: 

 

1. Compare monthly average daily usages between treatment and control groups by month.  

Conduct mean comparison tests to determine whether the difference between the 

treatment and control group usages is statistically significant.   

 

2. Plot average daily usages for treatment and control groups for each pre-treatment month 

and visually inspect whether the average daily usages follow the same pattern across a 

given month for both groups.   

 

3. Compare the distributions of socio-demographic and appliance characteristics between 

the treatment and control groups to the extent that data is available.  Determine whether 

these characteristics are statistically similar between the two groups.   

 

If these analyses imply that the treatment and control groups are similar to each other in most of 

these dimensions, the control group is further verified to be a reliable “but for” group for the 

treatment group.  To the extent that there are some dissimilarities between the two groups in 

terms of their usages and largely time-invariant (at least during the study time frame) socio-

demographic and appliance characteristics, these differences can be accounted for in the impact 

evaluation framework as we will discuss in Section 3.3.2. Alternatively, the randomization 

procedure can be repeated until balance is achieved
5
.  

3.3. Specify the Impact Evaluation Framework 

The primary objective of impact evaluation is to obtain the most accurate impacts that can be 

attributed to a treatment tested in a program.  To ensure that the results are free from errors and 

can stand the scrutiny of internal and external stakeholders, the impact evaluation should adhere 

to the academic standards of applied econometrics.  Therefore, an impact evaluation approach 

adopted for a program must follow some generally accepted rules and conventions.  

 

As discussed previously, there are three main approaches that can be employed for impact 

evaluation of the behavior-based energy efficiency programs: (i) Difference of Means or 

                                                                                                                                                             
Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential 

Energy Usage. http://ssrn.com/abstract=1434950. 
5
   In addition to pure randomization discussed in this document, there are other randomization methods 

namely stratified randomization, pair-wise matching randomization, and re-randomization methods.   See, 

for example, Miriam Bruhn and David McKenzie. In Pursuit of Balance: Randomization in Practice in 

Development Field Experiments.  American Economic Journal: Applied Economics 2009, 1:4, 200-232. 

They show that with large sample sizes, the method of randomization matters much less for the degree of 

balance of treatment and control groups. 
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Analysis of Variance (ANOVA); (ii) Difference-in-Differences of Mean Values; (iii) Panel Data 

Regression Analysis.  Our recommended approach is Panel Data Regression Analysis technique 

because it is possible to increase the efficiency and precision of the estimates using repeated 

measures on each program participant and to account for time-invariant unobservable variables 

that would otherwise lead to biased estimates, using this technique.  Several other reasons for 

this recommendation were provided in Section 3.1.  

3.3.1. Overview of Panel Data Regression Analysis 

In simple terms, a regression model relies on a dataset and statistical analysis to develop a 

mathematical relationship between a variable of interest (dependent variable) and other variables 

(independent or explanatory variables) that influence the variable of interest.
6
  A regression 

analysis may utilize a cross-sectional dataset, a time-series dataset, or a hybrid of the two, a 

panel dataset.   

 

A cross-sectional dataset consists of different individuals measured for certain characteristics at 

a given point in time.  Consequently, a cross-sectional regression analysis defines a mathematical 

relationship between dependent and independent variables by utilizing data on different 

individuals measured at one point in time.    

 

On the other hand, a time-series dataset consists of one individual measured for certain 

characteristics at different points in time.  Driven by the nature of this dataset, a time-series 

regression analysis develops a relationship between dependent and independent variables by 

utilizing the data on one individual measured at different points in time.  

 

Finally, a panel dataset (also known as cross-sectional time-series or longitudinal data) consists 

of different individuals measured for certain characteristics at different points in time.  A panel 

data regression utilizes the variation in the data across individuals, as well as across time, to fit a 

relationship between dependent and independent variables.
7
 Naturally, observing many 

individuals over time is more advantageous compared to having either cross-sectional data alone 

or time-series data alone.  A panel dataset makes it possible to study different research 

hypotheses related to impacts that only emerge over time.  For instance, in the context of a 

behavior-based energy efficiency program, if a researcher is interested in understanding the 

persistence of a program’s impacts, she will need to employ a panel dataset to explore this 

question.  However, the most important benefit of a panel dataset is that it allows a researcher to 

account for time-invariant unobservable characteristics of individuals that could otherwise 

introduce bias to the estimation results.  These biases could be certain socio-demographic and 

appliance characteristics such as education level of head of household, income level, central air 

conditioning ownership, and so on.  If a researcher does not observe, or have reliable data on, 

these characteristics, it is not possible to employ these variables as independent variables even 

                                                 
6
  California Public Utilities Commission, Energy Division. Attachment A- Load Impact Estimation for 

Demand Response: Protocols and Regulatory Guidance, April 2008. pp. 60 
7
  Jeffrey M. Wooldridge.  Introductory Econometrics- A Modern Approach. Fourth Edition, South-Western 

Cengage Learning, 2009.  This book is a good reference for regression analysis in general and introductory 

panel data regression technique.   
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though they have the potential to explain the variation in the dependent variable.  As we will 

discuss in Section 3.3.3, omission of these variables from the regression model leads to an 

“omitted variable” problem which may result in biased parameter estimates. 

 

There are two widely used panel data estimators that account for the unobservable factors that 

may vary across individuals, but are constant over the course of the study: (i) fixed-effects 

estimator, (ii) random effects estimator.
8
 

 

One of the key assumptions for a regression model to produce unbiased estimates, the error term, 

u, must have an expected value of zero given any value of the model’s independent variables 

( 0)|( =XuE , zero conditional mean assumption).  This implies that the error term must not be 

related to any of the independent variables in the model.  However, when an independent 

variable is omitted from the regression, it is automatically included in the error term.  If this 

omitted variable is related to one of the model’s independent variables, then the error term 

becomes related to one of the independent variables violating the zero conditional mean 

assumption and leading to biased parameter estimates.   

 

Fixed-effects (FE) estimation assumes that the unobservable factor (the error term) is related to 

one or more of the model’s independent variables.  Therefore, it removes the unobserved effect 

from the error term prior to model estimation using a data transformation process.  During this 

process, other independent variables that are constant over time are also removed.  This 

drawback of the FE estimation implies that it is not possible to estimate the impact of variables 

that remain constant over time, such as ownership of a single-family house.  However, it is still 

possible to estimate the impact of the ownership of a single-family house in the post-treatment 

period, by interacting the single-family home variable with a post-treatment period indicator 

variable (which is time-variant) 

 

Random-effects (RE) estimation is a reasonable alternative when a researcher is able to explicitly 

control for all potential independent variables and has a good reason to think that any 

unobservable variable that may be pooled in the error term is not correlated with any of the 

model’s independent variables.  If this assumption holds, then removing it from the error terms, 

as in the case with FE estimation, would result in inefficient estimates.  Therefore, RE estimator 

is a more efficient estimator compared to that of FE when the unobserved effect is uncorrelated 

with independent variables.  Moreover, RE estimator has the advantage of allowing for the 

estimation of variables that remain constant over time.  However, it is important to note that if 

the assumption about the unobservable effect does not hold, then the RE estimator would yield 

biased parameter estimates.   

 

Most of the time, the primary reason for using panel data is to account for the unobservable time-

invariant effects, which are thought to be correlated with the independent variables using, an FE 

estimator.  If this assumption does not hold however, the parameter estimates would be less 

efficient compared to those that can be estimated using an RE estimator.  Fortunately, there is a 

statistical procedure called the “Hausman test” which is used to assess whether the RE or FE is a 

                                                 
8
  Jeffrey M. Wooldridge.  Econometric Analysis of Cross-Section and Panel Data. First Edition, 

Massachusetts Institute of Technology , 2001. 



12  

more suitable estimator for a given panel regression model.
9
  The Hausman test is based on 

estimating a model using both FE and RE and then formally testing for differences in the 

parameter estimates.  Rejection of Hausman test implies that the RE assumption is not valid; 

therefore, the researcher should employ the FE routine to obtain unbiased parameter estimates.  

3.3.2. An Example Model Specification 

In this section, we present a general model specification that can be used to estimate the impact 

of behavior-based energy efficiency programs.  This specification is just one of many alternative 

specifications that can be employed by researchers and it is included in this guideline document 

to demonstrate the concepts we have previously introduced in this document.
10

 

 
ln_ kWhit = α0 + α1Treatmenti + α2Postt + α3TreatmentxPostit

+β1HDDt + β2HDDxTreatmentit + β3HDDxPostit + β4HDDxTreatmentxPostit

+δ1CDDt +δ2CDDxTreatmentit +δ3CDDxPostit +δ4CDDxTreatmentxPostit

+v i + uit

             (1) 

 

 

Where:  

 

itkWhln_   : Natural logarithm of monthly average kWh/day for customer i and 

month t.      

 

iTreatment   : Dummy variable that takes the value of 1 if customer i is a treatment 

customer.  

 

tPost  : Dummy variable that takes the value of 1 if month t is in the treatment 

period. 

 

itPostTreatmentx  : Dummy variable that takes the value of 1 if customer i is measured in 

the treatment period month t.  

 

tHDD  : Heating degree days per day for month t 

 

itentHDDxTreatm  : Interaction of tHDD with iTreatment  

 

itHDDxPost  : Interaction of tHDD with tPost  

 

                                                 
9
  Some econometric packages, such as STATA, have a routine to calculate the Hausman test.  

10
  It is possible that the interactions of the CDD and HDD variables with the Post , Treatment , and 

PostTreatmentx variables will turn out to be insignificant when the model is estimated.  In that case, it 

may be preferable to estimate a more simplified version of this model where the CDD and HDD variables 

are included in the model without interactions.  
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itentxPostHDDxTreatm  : Interaction of tHDD with itPostTreatmentx  

 

tCDD  : Cooling degree days per day for month t 

 

itentCDDxTreatm  : Interaction of tCDD with iTreatment  

 

itCDDxPost  : Interaction of tCDD with tPost  

 

itentxPostCDDxTreatm  : Interaction of tCDD with itPostTreatmentx  

 

iv  : Time invariant fixed effect term for customer i. 

 

itu  : Independent and identically distributed random error term for 

customer i at month t. 

 

This equation is estimated using data on both treatment and control customers before and during 

the treatment period.  This type of database allows one to isolate the true impact of a program by 

controlling for any potential biases due to (i) differences between control and treatment groups in 

the pre-treatment period (ii) any changes in the consumption behavior of the treatment customers 

between the pre-treatment and treatment periods that are not related to the treatment per se.  

These potential confounding factors are controlled for by introducing dummy variables 

pertaining to the customer type ( iTreatment ) and the analysis period ( tPost ). 

 

It is important to properly control for the impact of weather conditions on the usage behavior of 

the customers and isolate the impact of the program treatments.  If there is a usage reduction in 

the treatment period, a researcher must ensure that the reduction due to possibly milder weather 

conditions (therefore less CAC or electric heating load) in the treatment period is properly 

identified and not attributed to the behavior-based energy efficiency program that is being tested. 

In order to compare pre-treatment and post-treatment usages on a seasonal basis, it is 

recommended that at least one full year of usage data for both periods is collected.   

 

Due to the nature of the FE estimator, it is not possible to measure the impact of time-invariant 

socio-demographic and appliance characteristics on customer’s energy usage in this model since 

they will be removed along with the time-invariant un-observables.  However, it is possible to 

determine how the treatment impact varies with these time-invariant customer characteristics 

through interactions with tPost and itPostTreatmentx  variables.  For instance, if a researcher is 

interested in learning the incremental treatment impact of single-family housing, three additional 

variables can be included in the model above: iSF , itSFxPost , and itntxPostSFxTreatme .  The 

model will only estimate the parameters for the last two variables as FE routine will remove 

away the iSF  variable.   

 

Having discussed the variables included in the model, we can now define the average treatment 

impact (ATC) which is the sum of all terms multiplying the interaction term itPostTreatmentx : 
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^

ATC = tt CDDHDD 4

^

4

^

3

^

δβα ++                                                       (2) 

 

Where tHDD  and tCDD are the average values of the actual weather terms in the treatment 

period.   

 

As the dependent variable of our model is in logarithms, the average treatment impact calculated 

from (2) will be in percentage terms.  If a researcher chooses to define the dependent without the 

logarithmic conversion, then the appropriate calculations would need to be undertaken to convert 

the impacts into percentages.    

 

The average treatment impact estimated from the regression above is only a point estimate and 

does not mean much without its estimated standard error and confidence interval.  Confidence 

interval can be easily calculated as follows: 

 
^^

)(* ATCsecATC±                                                                               (3) 

 

For a 95% confidence interval, c is the 97.5
th

 percentile in a dft distribution and 1−−= kndf  

 

Lower and upper bounds of the confidence interval are given by: 

 
^^

)(* ATCsecATCLB −=   and   
^^

)(* ATCsecATCUB +=                   (4) 

 

A 95% confidence interval for 
^

ATC  implies that if random samples are drawn repeatedly, with 

LB and UB computed each time, the unknown population value for ATC  would lie in the 

interval (LB, UB) for 95 percent of the samples.
11

 

3.3.3. Issues in Regression Analysis 

It is often said that regression analysis is as much art as it is science.   A priori, it is not possible 

to come up with a prescriptive list or blueprint that can lead a researcher to the best model 

specification and the most accurate estimates of the regression parameters.  For that reason, it is 

important that impact evaluations of programs are undertaken by experienced professionals who 

have developed a modeling intuition over the years and excelled at the art of regression analysis.  

 

Although it is not possible to be prescriptive, it is still possible to identify major issues one 

should be aware of in regression analysis.  Below, we introduce these issues briefly and discuss 

their implications for the regression analysis:
12

 

 

 

                                                 
11

  For a detailed discussion of confidence interval, see Wooldridge (2009). 
12

  TecMarket Works. The California Impact Evaluation Framework. June 24. pp. 113-117.  See for detailed 

discussion of regression issues. 
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1) Model Misspecification: A model misspecification refers to incorrect specification of a 

relationship between dependent and independent variables.  It can take different forms: 

 

a) Omitted variables:  this is the most common form of model specification error.  When a 

variable is omitted from a regression model, it is pooled in the error term.  If the omitted 

variable is correlated with at least one of the independent variables, then the zero 

conditional mean assumption is violated leading to biased estimates for all parameters.  

b) Inclusion of irrelevant variables (over-specification of the model): this issue emerges 

when one or more of the independent variables in a regression model have no effect on 

the dependent variable.  Inclusion of irrelevant variables into the regression model does 

not lead to biased parameter estimates, however, it leads to larger variances for the 

estimated parameters.   

c) Incorrect functional form: if the functional form used to describe a relationship between 

the dependent and independent variables does not reflect the true relationship, it will lead 

to biased estimates as well as a meaningless estimate of the relationship.  Omission of 

interaction terms, quadratic terms, or defining variables in levels rather than logarithmic 

terms when the model calls for these terms, are some examples of functional form 

misspecification.  It is often difficult to tell whether a model has a misspecification error 

or not.   Although there are some tests to find out whether a model has an omitted 

variable problem, there is not a prescriptive way of testing for model misspecification
13

.  

Most of the time, the best guidance a researcher can rely on is the economic theory, 

relevant literature, and experience.  

 

2) Measurement Error: When the actual data on dependent or independent variables differ from 

data on the reported or measured variables, the estimated regression model includes a 

measurement error.  If a variable (dependent or independent) includes a measurement error, 

and if this error is uncorrelated with the explanatory variables, the parameter estimates will 

still be unbiased.  The variance will be, however, larger compared to a case without a 

measurement error, a situation which can only be addressed by collecting better data.  When 

a variable (dependent or independent) includes a measurement error which is correlated with 

one or more independent variables in the model, the problem is more serious.  The parameter 

estimates from the model will be biased and inconsistent.  

 

3) Heteroscedasticity: in order to obtain correct inferences based on hypothesis testing, the error 

term of a regression model must have the same variance for any given value of an 

independent variable.  If this assumption is violated, then the regression estimation suffers 

from heteroscedasticity.  If a model has the heteroscedasticity problem, the parameter 

estimates would still remain unbiased; however, standard errors would be inaccurate.  A 

relatively simple way to detect heteroscedasticity is to plot a model’s error term against the 

independent variable(s) it is thought to be correlated with and assess whether there is a 

detectable correlation between the two series.  As a good practice, it is recommended to use 

“heteroscedasticity-consistent standard errors” (or Huber-White standard errors) in the OLS 

estimations.  If the heteroscedasticity is present, the errors will be fixed, otherwise the errors 

will remain unchanged.  For more serious forms of heteroscedasticity, the researcher may 

need to resort to the weighted least squares estimation.  

                                                 
13

  Peter Kennedy. A Guide to Econometrics. Fifth Edition, The MIT Press, 2003. 
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4) Autocorrelation:  if the errors from two different time periods are correlated, then we say that 

the errors suffer from autocorrelation or serial correlation.  Autocorrelation is a very common 

problem in time series and panel-data regression analyses due to the time nature of the data.  

When the errors are serially correlated, the estimated parameters remain unbiased, but the 

standard errors are biased.  This implies that statistical inference based on the estimated 

standard errors would be inaccurate.  There are standard tests to detect the existence of 

autocorrelation such as Durbin-Watson and Breusch-Godfrey tests.  It is recommended to 

rely on “autocorrelation-robust standard errors” through clustering of the error terms to 

correct for the unknown form of autocorrelation in the error terms
14

.  If the form of 

autocorrelation is known, it is possible to obtain more efficient estimators by using a feasible 

GLS estimator such as Cochrane-Orcutt or Prais-Winsten estimators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
14

  These errors are called panel cluster standard errors and they are robust to both heteroscedasticity in the 

cross-section dimension as well as unknown forms of serial correlation in the time series dimension.  
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APPENDIX 

 

Calculating Sample Size in Studies with Single Measurement and Repeated Measurement
15

  

 

The following is a list of terms and parameters that are used in the sample size formulas: 

 

n1 & n2   = the sample size in population 1 and population 2 

samples  = indicator for one or two-sample test (values = 1 or 2) 

m1 & m2  = the means of population 1 and population 2 

sd1 & sd2 = the standard deviations of population 1 and population 2 

alpha  = the significance  level of the test 

power  = 1 − β is the power of the test 

ratio  =  the ratio of sample  sizes for two-sample  tests: ratio = n2/n1 

base  = the number of baseline measurements planned in a repeated- measure study 

follow  = the number of follow-up measurements planned in a repeated- measure study 

r0   = the correlation between baseline measurements in a repeated-measure study 

r1   =  the correlation between follow-up measurements in a repeated-measure  
         study 

r01  = the correlation between baseline and follow-up measurements in a repeated-
      measure study 

sides   = indicator for one-sided  or two-sided test (values = 1 or 2) 

method  = post, change, or ancova analysis method to be used with repeated measures 

asd1 & asd2 = the standard deviations of population 1 and population 2 adjusted for the   

          relative efficiency gained from multiple observations 

sdadj  = the adjustment factor based on the relative efficiency gained from multiple 

     observations, which is applied to the standard deviation 

 

1- Studies with Single Measurement of the Outcome 
 

For simple studies, with only one outcome measurement, the basic method to calculate the 

sample size of the treatment group (n1) is: 

 
One-sample test (treatment group (m1) v. hypothesized mean (m2)): 
 
n1 =  sd1

2
* (z1-alpha/sides + zpower)

 2
 

-------------------------------------- 
 (m1-m2)

2
 

 
 
 
 

 

                                                 
15

  See Hilbe, J. M. Sample size determination for means and proportions.  Stata Technical Bulletin, 1993,  

11:17-20, and Seed P.T. Sample Size Calculations for Clinical Trials with Repeated Measures Data.  Stata 

Technical Bulletin, 1997, 40:16-18.  Also see the discussion of the sampsi command in the Stata Technical 

Manual for more information. 
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Two-sample test (treatment (m1) v. control (m2)): 
 
n1 =  (sd1

2
 + sd2

2
/ratio)*(z1-alpha/sides + zpower)

 2
 

---------------------------------------------------------- 
 (m1-m2)

2 

 
 

2- Studies with Repeated Measurement of the Outcome 
 

In studies with repeated measurements taken at baseline and/or follow-up, there can be an 

increase in efficiency (as compared to a single outcome measurement) due to the correlation 

between measurements at different time points.  The method to calculate the sample size of 

the treatment group (n1) is the same as with the single measurement studies, adjusting for 

the change in efficiency of the standard error: 

 
One-sample test (treatment group (m1) v. hypothesized mean (m2)): 
 
n1 =  asd1

2
* (z1-alpha/sides + zpower)

 2
 

-------------------------------------- 
 (m1-m2)

2
 

 
 
Two-sample test (treatment (m1) v. control (m2)): 
 
n1 =  (asd1

2
 + asd2

2
/ratio)*(z1-alpha/sides + zpower)

 2
 

---------------------------------------------------------- 
 (m1-m2)

2
 

 

where: 

 asd1 = sd1 * sdadj 

 asd2 = sd2 * sdadj 

 

and the relative efficiency is calculated as: 

 

Relative efficiency =  1 

 --------- 

 sdadj
2
 

 

The adjustment to the standard deviation (sdadj) is calculated according to the method used. 

 

a) Post-treatment Method (post) 
The post-treatment method (post) utilizes information from multiple follow-up observations, 

ignoring baseline measurements.  Using the post method with a single follow-up observation 

is equivalent to using the unadjusted single-outcome calculation. 

 

sdadj =
follow

r1follow ×−+ )1(1
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b) Change Method (change) 

The change in means method (change) utilizes information from both multiple baseline and 

multiple follow-up observations.  Using the change method with a single baseline and a 

single follow-up observation is equivalent to using the unadjusted single-outcome 

calculation. 

 

sdadj = r01
base

r0base

follow

r1follow
2

)1(1)1(1
−

×−+
+

×−+
 

 

c) ANCOVA Method (ancova) 

The ANCOVA method (ancova) utilizes information from both multiple baseline and 

multiple follow-up observations.  It adjusts the standard deviation to account for covariance 

among observations and corrects for the average at mean at baseline.  Using the ancova 

method with a 0 correlation between baseline and follow-up measurements is equivalent to 

using the unadjusted single-outcome calculation. 

 

sdadj = 
r0base

baser01

follow

r1follow

×−+

×
−

×−+

)1(1

)1(1 2

 

 

 

 


