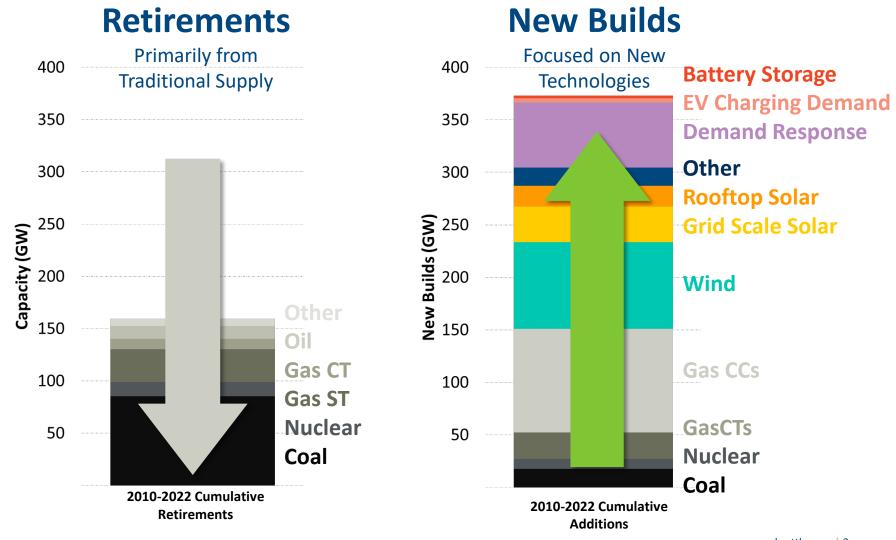
The Cutting Edge in Resource Planning

RETHINKING SYSTEM NEEDS AND IN A FUTURE DOMINATED BY RENEWABLES, NEW TECH, AND ENGAGED CONSUMERS

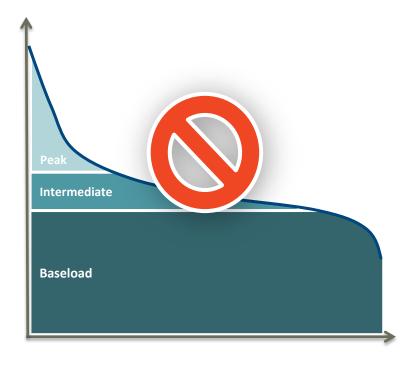
PRESENTED TO

Solar Energy Industries Association

PRESENTED BY


Kathleen Spees

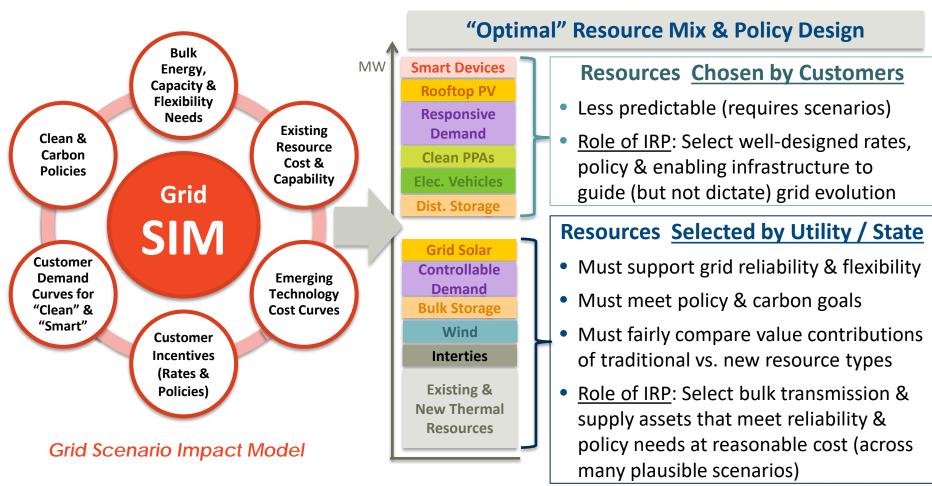
November 12, 2018



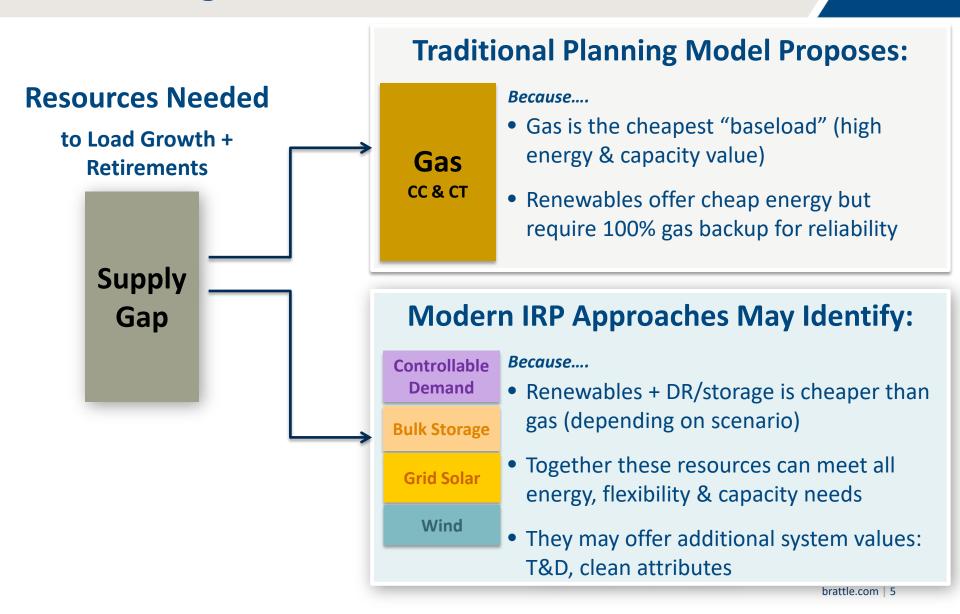
New Technologies & Engaged Customers Are Rapidly Overtaking Traditional Supply

The "Old" IRP Model Doesn't Work Anymore

The Traditional IRP


What's Missing?

- New reliability & flexibility needs
- Policy goals
- New technologies
- Corporate sustainability goals
- Customer preferences
- Distributed resources uptake
- Electrification vs. grid defection
- Enabling policies & infrastructure


In other words.... Traditional IRP approaches are ill-equipped to address almost every major driver that is reshaping the grid!

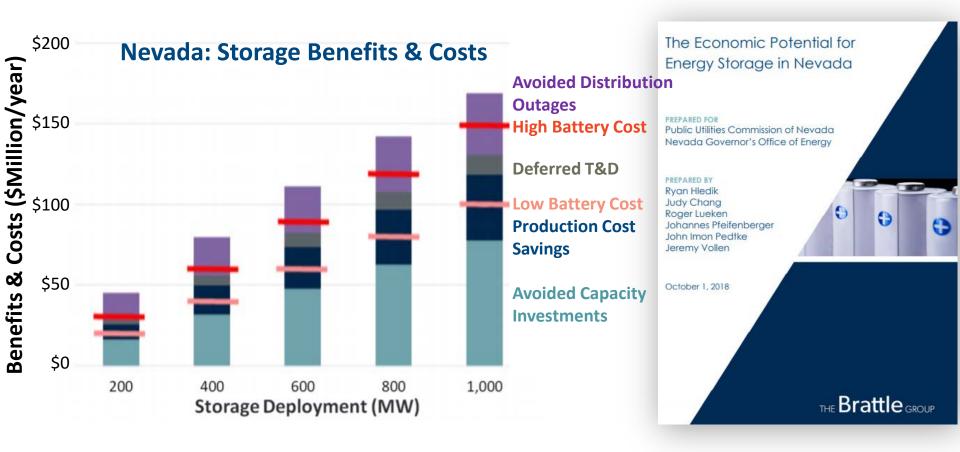
How Do You "Plan" for the New Grid?

At Brattle, we have had to completely re-build our strategic approach and modeling tools to characterize emerging trends & uncertainties

Typical Question: How to Replace a Retiring Coal Plant?

System Needs

Properly Decomposing System Needs Can More Accurately Compare Range of Resources


Compared to traditional planning and procurement, technologyneutral (capability-based) evaluations are more competitive

	Technology Types ————												
	Nuclear	RoR Hydro	Hydro w/ Storage	Coal	СС	СТ	Wind	Solar	Battery Storage	DR	EE	Imports	Competing Technologies
DA Energy	✓	✓	✓	✓	✓	0	✓	✓	0	0	0	✓	10
RT Energy (5 min)	0	✓	✓	✓	✓	0	✓	✓	0	0	0	0	9
Regulation	X	✓	✓	✓	✓	0	0	0	✓	0	X	0	7.5
Spinning Reserves	X	0	✓	✓	✓	✓	X	X	✓	0	X	0	6.5
Non-Spinning Reserves	X	X	✓	X	✓	✓	X	X	✓	0	X	0	5
Load following / Flexibility	0	0	✓	0	✓	✓	0	0	✓	0	X	0	7.5
Capacity / Res. Adequacy	✓	0	✓	✓	✓	✓	0	0	0	✓	✓	✓	10
Clean Energy	✓	✓	✓	X	0	0	√	√	0	0	✓	✓	9
Reactive / Voltage Support	✓	✓	✓	✓	✓	√	0	0	✓	X	X	0	8.5
Black Start	X	✓	✓	0	1	1	X	X	0	X	X	0	6

Technical Capability to Provide Service Legend Well Suited (1.0) Neutral (0.5) Not / Poorly Suited (0)


Example: Brattle Estimates 700-1,000 MW Nevada Storage Potential (50,000 MW US-Wide!)

Achieving economic potential depends on "stacking" value streams: energy, ancillaries, capacity, T&D, environmental, and avoided outages

Takeway: It's Time to Rethink Nearly Every Aspect of the Traditional IRP...

...in order to support ambitious policy objectives, enable engaged customers, and leverage new technologies

PRESENTED BY

KATHLEEN SPEES

PRINCIPAL, WASHINGTON DC

1.202.419.3390
KATHLEEN.SPEES@BRATTLE.COM

Dr. Kathleen Spees is a principal at The Brattle Group with expertise in wholesale electricity markets design and environmental policy analysis.

Dr. Kathleen Spees is a Principal at The Brattle Group with expertise in designing and analyzing wholesale electric markets and carbon policies. Dr. Spees has worked with market operators, transmission system operators, and regulators in more than a dozen jurisdictions globally to improve their market designs for capacity investments, scarcity and surplus event pricing, ancillary services, wind integration, and market seams. She has worked with U.S. and international regulators to design and evaluate policy alternatives for achieving resource adequacy, storage integration, carbon reduction, and other policy goals. For private clients, Dr. Spees provides strategic guidance, expert testimony, and analytical support in the context of regulatory proceedings, business decisions, investment due diligence, and litigation. Her work spans matters of carbon policy, environmental regulations, demand response, virtual trading, transmission rights, ancillary services, plant retirements, merchant transmission, renewables integration, hedging, and storage.

Dr. Spees earned her PhD in Engineering and Public Policy within the Carnegie Mellon Electricity Industry Center and her MS in Electrical and Computer Engineering from Carnegie Mellon University. She earned her BS in Physics and Mechanical Engineering from Iowa State University.

Our Practices and Industries

ENERGY & UTILITIES

Competition & Market Manipulation

Distributed Energy Resources

Electric Transmission

Electricity Market Modeling

& Resource Planning

Electrification & Growth

Opportunities

Energy Litigation

Energy Storage

Environmental Policy, Planning and Compliance

Finance and Ratemaking

Gas/Electric Coordination

Market Design

Natural Gas & Petroleum

Nuclear

Renewable & Alternative Energy

LITIGATION

Accounting

Analysis of Market

Manipulation

Antitrust/Competition

Bankruptcy & Restructuring

Big Data & Document Analytics

Commercial Damages

Environmental Litigation

& Regulation

Intellectual Property

International Arbitration

International Trade

Labor & Employment

Mergers & Acquisitions

Litigation

Product Liability

Securities & Finance

Tax Controversy

& Transfer Pricing

Valuation

White Collar Investigations

& Litigation

INDUSTRIES

Electric Power

Financial Institutions

Infrastructure

Natural Gas & Petroleum

Pharmaceuticals

& Medical Devices

Telecommunications,

Internet, and Media

Transportation

Water

Our Offices

