
Copyright © 2018 The Brattle Group, Inc.

Reinventing Demand 
Response for the Age of  
Renewable Energy 

PREPARED BY
Ahmad Faruqui 
Ryan Hledik

December 14, 2018



brattle.com | 2

The Age of Renewable 
Energy   
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Why reinvent demand response?

Renewable energy is getting high priority in most markets, driven by a 
desire to protect the climate of the planet, while also giving customers 
a chance to generate their own power

The primary sources of renewable energy today are solar and wind; 
others include geothermal, small-scale hydro; in some cases, large-
scale solar and nuclear energy are also regarded as renewable energy 
resources 

Battery storage, coupled with demand response, facilitates the 
integration of renewable energy into the grid

State governments in the US have established clean energy goals for 
renewable energy
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Some states have set very aggressive 
targets for meeting their energy needs 
through renewable energy resources 
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The CEO of Xcel Energy just 
announced a landmark initiative 

He wants his company to generate all its power from 
carbon-free energy resources by 2050
– Carbon-free includes nuclear energy, which accounts for 11 

percent of the company’s resource mix today

Xcel Energy serves 3.6 million electricity and 1.8 million 
natural gas customers in 8 states
– About 80% of them are located in two states: Colorado and 

Minnesota 
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There are three issues with integrating 
renewables into the grid 

1. Intermittency: wind and solar generation are highly variable, 
which leads to reliability concerns

– Power plants have high startup and shutdown costs, so it is not easy 
for them to fill in when variable generation lags

2. Ramping: wind and solar both have morning and evening 
production “ramps” 

– Fortunately, wind and solar have complementary load profiles

3. Over-generation: wind poses significant risk of over-generation 
because wind farms produce the most electricity at night 
when loads are low

Source: Integrating Renewable Resources in California and the Role of Automated Demand Response. Lawrence Berkeley 
National Laboratory. November 2010. 
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Grid-integration requires dynamic 
load response at all hours of the day 

This dynamic load response is achievable through load 
flexibility on a 24/7 basis and that can be achieved by a 
transition from Dynamic Pricing 1.0 to Dynamic Pricing 2.0

Dynamic Pricing 1.0: Critical peak pricing and peak-time rebates, 
sometimes with enabling technology  

Dynamic Pricing 2.0: Widespread real-time pricing (RTP) with 
enabling technology and automation, including advanced metering 
infrastructure (AMI) and set-it-and-forget-it heating, ventilating, 
and air condition (HVAC) equipment 
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RTP can help integrate renewables by 
creating around-the-clock flexibility in 
load 
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Dynamic Pricing 2.0 = RTP + fast 
response technologies

Fast response technologies include:
– Advanced metering infrastructure
– Smart appliances
– Home energy controllers
– Energy storage
– Electric vehicles
– Batteries

Integration requires the provision of ancillary services which 
include: 

– Spinning reserves
– Non-spinning reserves
– Regulation up and regulation down
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A pocket history of dynamic pricing
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We simulated the application of RTP in 
New York state 

We used price elasticities from the Illinois RTP program to simulate the 
impact of an RTP rate structure in New York  
In an average year, the top 1% of hours of electric demand (~90 hours) 
in New York State account for more than 10% of system peak demand

Source: Potential Wholesale 
Market Benefits in New York 
State. ISO NY. Samuel Newell 
and Ahmad Faruqui. October 
27, 2009

Comparison of Flat and Hypothetical Dynamic Rates in New York City for 2010
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Using the PRISM software, we showed that 
RTP can reduce the peak load in New York 
City by 13-16%

Base Case: No technology; elasticities unchanged

Conservation Case: Customers provided with in-home displays

High Capacity Price: Capacity prices are increased to reflect higher cost of entry

High Elasticity: Elasticities are twice as high as the base case to represent impact 
of enabling technology facilitating load shifting

Source: Potential Wholesale Market Benefits in New York State. ISO NY. Samuel Newell and Ahmad Faruqui. October 27, 2009.

Change in 
System Peak

Change in 
New York City 

Peak

Change in 
Long Island 

Peak
Change in 

Average Load
Dynamic Pricing 
Scenario All Hours All Hours All Hours All Hours

150 Hours 
w/Max Δ Load

(MW) (%) (MW) (%) (MW) (%) (MW) (%) (MW) (%)
Base Case (3,418) (10%) (1,514) (13%) (590) (11%) 84 0.4% (1,897) (6%)
Conservation (3,751) (11%) (1,514) (13%) (604) (11%) (288) (1.5%) (2,158) (7%)
High Capacity Price (4,282) (13%) (1,671) (14%) (776) (14%) 176 1.0% (3,147) (11%)
High Elasticity (4,603) (14%) (1,961) (16%) (779) (14%) 130 0.7% (3,606) (12%)
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Back to the future 

In 1981, MIT’s Fred Schweppe published Homeostatic Control: 
The Utility/Customer Marketplace for Electric Power

In Schweppe’s formulation, homeostatic control is the ability to 
maintain internal equilibrium between electricity supply and 
electricity demand through technological and economic means 

It is based on two principles

– Customer independence
– Feedback between the customer and utility

The idea of flexible load shapes was also discussed in Clark 
Gellings’ 1982 paper on Demand-Side Planning; he also 
emphasized the need to “get prices to devices”
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The Schweppian future

6:00 am   Computer gets hot water ready for shower when consumer wakes 
up

7:00 am   Computer displays its energy use plan for next 24 hours based on 
predicted weather, spot price patterns and owner's average 
lifestyle, which computer has learned (think Nest thermostat)

10:00 am Latest spot price and weather forecasts cause computer to pre-
cool parts of the house so it can "coast" during the afternoon

12:00 pm Consumer calls computer to say guests are spending the night. 
Computer incorporates air conditioning the guest room into its 
strategy

3:00 pm   A large quantity of supply is lost due to a storm. Computer reacts 
to very high spot prices by turning off everything except the 
refrigerator, freezer and itself
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The Evolution of Demand 
Response  
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Demand Response has evolved 
dramatically over the past five decades

About five decades ago, it was simply called load management
– The policy driver was peak clipping

It was implemented through two mechanisms
– Direct load control of water heaters and central air conditioners for 

residential customers and curtailable and interruptible rates for 
commercial and industrial customers 

After the California energy crisis of 2000-01, the name load 
management was replaced with demand response 
– The intent was to use demand response to connect retail and 

wholesale markets.
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The Federal Energy Regulatory Commission 
(FERC) published a “National Assessment 
of Demand Response” in 2009

The FERC sized up the current state of play in demand response 
an identified a wide range of programs, including traditional 
curtailment programs and innovative price-responsive programs

It also estimated the potential for expanding demand response 
and projected the likely impact of demand response under 
different scenarios  

A year later, the FERC published a national action plan for 
demand response; this was followed by an implementation plan 
for demand response, which was co-authored with the U.S. 
Department of Energy
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The National Assessment modeled potential 
DR impacts for four scenarios, each designed 
to answer a different question

Business-as-Usual (BAU)
– How much DR exists today?

Expanded DR (EDR)
– How much DR could be achieved if cost-effective reliability-based programs 

all reached today’s “best practices” levels?

Achievable Market Potential (AMP)
– How much DR could be achieved if all cost-effective DR options were 

pursued (including price-based DR), while accounting for realistic market 
acceptance levels?

Economic Potential (EP)
– What is the total amount of cost-effective DR that could be achieved?
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It identified some key differences in 
the assumptions across the four 
potential scenarios

 Assumption Business-as-Usual Expanded 
DR

Achievable Market 
Potential

Economic 
Potential

AMI deployment Today's level Partial deployment Full deployment Full deployment

Dynamic pricing participation (of eligible) Today's level Voluntary (opt-in); 
5%

Default (opt-out); 
60% to 75%

Universal (mandatory);
100%

Eligible customers offered enabling tech None None 80% 100%

Eligible customers accepting enabling tech None None 60% 90%

Basis for non-pricing participation rate Today's level "Best practices" 
estimate

"Best practices" 
estimate

"Best practices" 
estimate

Key Differences in Scenario Assumptions
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FERC projected that demand 
response could range between 3% 
and 15% in 2019

Estimates are in the final stages of revision and are subject to change

U.S. Peak Demand Forecast by Scenario
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Aggressive pursuit of price-based 
programs can lead to the largest 
amount of demand response

U.S. DR Potential by Program Type (2019)
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Demand Response 2.0 and 
Load Flexibility  
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Enter demand (load) flexibility  

The ability to flex the load shape 24/7 in response to system 
conditions

Lower demand during peak times, for example when there is a 
shortage of energy supply
– Use self-generated power from solar panels (PVs), microturbines, or 

co-generation (CHP); curtail consumption through energy efficiency 
(EE)

To build demand during off-peak times, for example when there 
is an excess of energy supply
– Charge electric vehicles (EVs)

And shift load from peak to off-peak at other times
– Thermal storage, such as smart water heating
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Notes: EV charging demand assumes 6 kW charging demand per EV, does not account for coincidence of charging 
patterns. Rooftop solar PV estimate is installed capacity, does not account for derated availability during peak.



brattle.com | 25

“DR 1.0” has matured

Once a rapidly growing resource, conventional DR is 
reaching a saturation point in markets where load growth 
has stalled

Total U.S. DR Peak Reduction Capability Contributing Factors

– Increasingly stringent 
wholesale market 
participation rules

– Low capacity market 
prices

– Flat/depressed hourly 
energy price profile

– 5 to 10 years of excess 
peaking capacity 
projected by many 
utilities
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“DR 2.0” provides improved system 
flexibility

DR can be repurposed to address three emerging industry trends
Mega-trend Challenges

Renewables growth

• Low net load leads to renewables 
curtailment and/or inefficient 
operation of thermal generation

• Intermittency in supply contributes to 
increased need for ancillary services

Grid modernization
• Costly upgrades are needed to 

improve resiliency and accommodate 
growth in distributed energy resources

Electrification
• Rapid growth in electricity demand 

may introduce new capacity 
constraints

DR 2.0 Solution

• Electricity consumption can be 
shifted to times of low net 
load

• Fast-responding DR can 
provide ancillary services

• Geographically-targeted DR
can help to defer capacity 
upgrades

• Controlling new sources of 
load can reduce system costs 
while maintaining customer 
comfort and adding value to 
smart appliances and EVs
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Consumer technologies drive the DR 
2.0 transition

Adoption of behind-the-meter (BTM) energy technology is accelerating; 
these technologies are enabling the provision of DR 2.0
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What is the market potential for DR 
2.0?

Recent “load flexibility” studies are informative but have limitations

Load Flexibility Studies (10 total)
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Research Limitations
– Geographically limited
– No accounting for “value stacking”
– Ignore many emerging DR 2.0 

opportunities (e.g., EV charging, 
battery storage)

– Do not quantify local distribution 
capacity deferral value

– Largely focused on engineering 
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Understanding DR 2.0 market 
potential & value

DR 1.0 market potential studies took a narrow view of DR 
capabilities. They need to be expanded to capture the full 
value of DR 2.0

Generation 
capacity 

avoidance

Reduced 
peak energy 

costs

System peak 
related T&D 

deferral

HVAC load control X X X

Interruptible tariff X X X

Time-of-use (TOU) rates X X X

Dynamic pricing X X X

Programs typically focus 
on demand reductions 
during a limited peak 
window and are 
constrained to a small 
number of hours per year

Quantified value and 
associated market 
potential are derived 
only from reductions in 
system peak demand

Scope of “DR 1.0” Market Studies
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DR 2.0 will be used to address a range of 
power system management challenges, 
not just to shave the peak

Extend DR value streams1

Generation 
capacity 

avoidance

Reduced 
peak energy 

costs

System peak 
related T&D 

deferral

Targeted 
distribution 

capacity 
deferral

Valley filling/ 
Load building

Ancillary 
services

HVAC load control X X X X

Interruptible tariff X X X

Time-of-use (TOU) rates X X X

Dynamic pricing X X X

Several new uses of DR 
are possible, but existing 
programs are limited in 
their ability to provide 
those services
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New DR 2.0 programs and technologies 
have the potential to provide higher value 
at a lower cost

Broaden 
definition 
of DR

2

Extend DR value streams1

Generation 
capacity 

avoidance

Reduced 
peak energy 

costs

System peak 
related T&D 

deferral

Targeted 
distribution 

capacity 
deferral

Valley filling/ 
Load building

Ancillary 
services

HVAC load control X X X X

Interruptible tariff X X X

Time-of-use (TOU) rates X X X

Dynamic pricing X X X

Behavioral DR X X X

EV charging control X X X X X X

Grid-interactive water heating X X X X X X

BTM battery storage X X X X X X

Smart thermostat X X X X

C&I load building X

C&I Auto-DR X X X X
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Brattle developed the LoadFlex Model to 
comprehensively assess DR 2.0 potential
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DR 2.0 
Analytical 
Challenge

LoadFlex Approach Illustration

Reliably
estimating 
impacts of 
nascent
programs & 
technologies

• Brattle maintains a database of DR 2.0 programs and 
their associated costs, impacts, and adoption rates

• Supplementary interviews are conducted to fill in gaps 
where publicly available data is limited

• Primary market research can establish tailored 
estimates of customer adoption

• Probabilistic analysis (i.e., Monte Carlo simulation) 
accounts for uncertainty

Accounting for 
“depth” of 
resource need

• Some of the new DR 2.0 value streams are sensitive to 
the quantity of the DR resource that is participating; for 
instance, frequency regulation is valuable but has very 
limited need on most systems

• Modeling establishes the “depth” of each value 
opportunity and quantifies the relationship between 
incremental value and DR resource additions

DR 2.0 analytical challenges and 
solutions

DR Enrollment Probability

DR Value vs Quantity
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DR 2.0 analytical challenges and 
solutions

DR 2.0 
Analytical 
Challenge

LoadFlex Approach Illustration

Quantifying 
deferred 
distribution 
capacity value

• Distribution capacity deferral is a highly system-specific 
calculation, requiring locational assessment of utility 
distribution system data

• Initial screening identifies grid locations at risk of capacity 
constraints

• The performance profile of the DR 2.0 resource is 
compared to the load profile of the distribution system 
component

• Capacity deferral value is assigned based on the 
probability that constraints can be relieved through 
deployment of the DR 2.0 resource

Accounting for 
“stacked value”

• DR 2.0 can provide multiple sources of value, but analysis 
must account for realistic operational constraints
associated with capturing this value

• Each value stream is converted to an hourly price series 
based on appropriate allocation factors

• DR 2.0 resource is “dispatched” against  the price series 
based on realistic utilization algorithms

DR Impact on Distribution System

DR Stacked Value
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Illustrating the potential for DR 2.0

Electric water heating is a compelling example of DR 2.0

Electric resistance water heating load can be controlled 
to provide several grid services. The thermal energy 
storage properties of the water tank work similar to a 
battery

While water heaters have been used to reduce peak 
capacity for decades, recent technological 
developments now allow for more flexibility in load 
control, including the provision of frequency regulation

In the past few years, “grid-connected water heating” 
programs have been introduced in Arizona, California, 
Hawaii, Minnesota, Oregon, Vermont, and across PJM

In recognition of the potential renewables integration 
benefits, 2015 federal legislation made grid-connected 
water heaters exempt from prohibitive energy efficiency 
standards
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Electric water heating: DR 1.0 versus 
DR 2.0

For a single electric resistance water heater, the system benefits of 
providing DR 2.0 grid services can significantly outweigh the costs
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Costs & Benefits of Single Water Heater Observations

– Relative to a simple peak 
shaving program, which is only 
utilized during 100 hours of the 
year, grid-connected water 
heaters provide higher benefits 
in the form of grid balancing 
and avoided energy costs

– In this example, the grid-
connected water heater is also 
assumed to target capacity-
constrained locations on the 
distribution grid; this results in 
an increase in avoided 
distribution costs and a 
decrease in avoided generation 
capacity costs due to non-
coincidence of the peaks



brattle.com | 37

An expanded DR 2.0 portfolio would reshape 
the load profile subject to system needs

Notes: Shown for cost-effective programs identified in 2030, accounting for portfolio overlap.  

Off-peak load building 
and frequency 
regulation

Deep curtailment 
during system 
peak, with 
additional 
curtailment to 
address distribution 
peak

Pre-cooling

Post-event 
snapback

Illustrative Load Impacts of a DR 2.0 Portfolio on Top Load Days
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Modernizing Tariffs 
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Ontario, Canada. Flat bill applies for distribution, Time-of-
Use (TOU) charge for default energy supply  

Arizona. 20% of customers on opt-in demand charges for 
one utility; mandatory demand charges for DG customers 
for another utility; TOU energy rates very popular for both

California. Mandatory TOU rates plus minimum bill for DG 
customers; Moving all other customers to default TOU in 
2019/20; SMUD has already begun moving its customers to 
default TOU; LADWP has introduced a fixed monthly 
charge that varies with customer kWh usage 

Utilities have begun modernizing tariffs 
in North America 
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Colorado: Fort Collins moved all customers to mandatory 
TOU rates in October 

Idaho: DG customers have been designated a separate rate 
class

Kansas: Mandatory three-part rates for DG customers; opt-
in for others

Montana: Utility has filed for designating DG customers as a 
separate rate class and for moving them to mandatory 
three-part rates

Tariff modernization in North America 
(continued)
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New York: Considering moving DG customers to demand 
charges or TOU energy rates or a combination of the two

Oklahoma: 20% of customers on a dynamic pricing rate 
with smart thermostats  

Texas: Considering moving distribution charges to a flat bill, 
similar to Ontario’s 

Tariff modernization in North America 
(concluded)
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Tariff modernization in Great Britain 

UK Power Networks in London is piloting a peak-time rebate 
(PTR) targeted specifically at low-income customers

A couple of pilots have tested other types of time-varying 
rates 

– One rate featured a “wind twinning” tariff, which was 
intended to encourage consumption increases/decreases at 
times of unexpectedly high/low output from wind generation 

– Some of the rates tested were dynamic in nature

Ofgem, the regulator, is examining new ways to increase the 
role of price responsive demand, including the possible 
introduction of Amazon and Google 
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Tariff modernization in Great Britain 
(concluded)

13% of customers are on a TOU rate (Economy 7) designed for 
customers with thermal energy storage
– The rate that has been offered for many years, is based on old 

technology, and the number of participants is in decline but 
provides a conclusive evidence of customer acceptance and 
response to time-varying tariffs

A start-up retailer has introduced a TOU tariff with a strong price 
signal 

British Gas offers a FreeTime tariff, which allows customers to 
pick one weekend day during which their electricity is free

A pilot tested the “Sunshine Tariff,” which charged a lower price 
during mid-day hours to alleviate local distribution system 
constraints due to net excess solar generation
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CLP  Power ran a pilot with peak-time rebates (PTR) for its 
residential customers

The pilot found that customers understand price incentives 
and respond to them

The utility, which has universal deployment of smart 
meters, has begun deploying PTR to several thousand 
customers 

Tariff modernization in Hong Kong 
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Millions of customers in Spain are on a real-time pricing 
tariff, which represents the default energy supply option

In Estonia, real-time pricing is also the default energy 
supply option and thousands of customers are on it

In Italy, millions of customers are on a default time-of-use 
rate

In Italy, Spain and France, customers pay a capacity charge 
for being connected to the grid 

Tariff modernization in the EU
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Modern tariff designs are being introduced throughout the 
globe

Customers understand modern tariffs and respond to 
them, enhancing economic efficiency in the use of scarce 
financial and energy resources, and promoting equity 
between customers 

Modern tariff design encompasses three elements: time-
varying energy rates, demand charges to recover capacity 
costs, and fixed charges to recover the costs of “revenue 
cycle” services

Some general themes have begun to 
emerge 
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There is a desire to move Fixed Charges 
closer to fixed costs 

Many utilities have proposed to increase the fixed charge, 
with varying degrees of success

Recent Proposals to Increase Fixed Charge Amount of Approved Increase
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Average increase = $2.71 (35%) 

Data sources: NC Clean Energy, “The 50 States of Solar,” Q2 2015.  Supplemented with review of additional utility rate filings. 
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Demand charges 

Capacity charges based on the size of the connection are 
mandatory for residential customers in France, Italy, and Spain

Demand charges are being offered by more than 30 utilities in 
the United States, including a few rural cooperatives   

Utilities such as Arizona Public Service, NV Energy, and Westar 
Energy have filed applications to make them a mandatory tariff 
for customers with PVs on their roof
– Salt River Project in Arizona, a municipally owned system, has 

instituted a mandatory tariff for DG customers 
– Commissions in Idaho and Kansas have ruled that DG customers 

can be considered a separate class   
– Kansas is rolling out three-part rates for DG customers
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Demand charges can be easily explained to customers using 
the example of a light bulb, which is expressed in watts, and 
by referring to the circuit breaker as an example of a 
household-specific capacity constraint 

Customers can be provided typical demand ratings of major 
appliances and loads in their house

The message, successfully expressed by utilities in Arizona, 
needs to be simple: “Don’t use all your major appliances at 
the same time.”

Will residential customers understand 
demand charges?
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Residential demand charges in the U.S. 

22 states are offering demand charges to residential customers 
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While increased fixed charges raise 
bills for small customers, demand 
charges do not 

With Increased Fixed Charge With New Demand Charge

– Correlation between bill impact and customer size is stronger with increased fixed charge.
– Whether small customers are low income customers is another question entirely…
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Modern rate designs will be an essential 
component of DR 2. 0 and indispensable 
to the grid-integration of renewables 

Rate Design Definition
Critical Peak Pricing (CPP) Customers pay higher prices during critical events when system costs 

are highest or when the power grid is severely stressed.
Demand Charges Customers are charged based on peak electricity consumption, typically 

over a span of 15, 30, or 60 minutes.

Inclining Block Rates (IBR) Customers are charged a higher rate for each incremental block of 
consumption.

Peak Time Rebates (PTR) Customers are paid for load reductions on critical days, estimated 
relative to a forecast of what the customer would have otherwise 
consumed (their “baseline”). 

Real-Time Pricing (RTP) Customers pay prices that vary by the hour to reflect the actual cost of 
electricity.

Seasonal Rates The year is divided into different seasons, commonly winter and 
summer, each of which have distinct rates. Prices are higher in peak 
seasons to refle seasonal variation in the cost of supplying energy.

Time-of-Use (TOU) The day is divided into time periods which define peak and off-peak 
hours. Prices are higher during the peak period hours to reflect the 
higher cost of supplying energy during that period.

Variable Peak Pricing (VPP) During pre-defined peak periods, customers pay a rate that varies by 
utility to reflect the actual cost of electricity.

Rate Design Definition
Critical Peak Pricing (CPP) Customers pay higher prices during critical events when system costs 

are highest or when the power grid is severely stressed.
Demand Charges Customers are charged based on peak electricity consumption, 

typically over a span of 15, 30, or 60 minutes.

Inclining Block Rates (IBR) Customers are charged a higher rate for each incremental block of 
consumption.

Peak Time Rebates (PTR) Customers are paid for load reductions on critical days, estimated 
relative to a forecast of what the customer would have otherwise 
consumed (their “baseline”). 

Real-Time Pricing (RTP) Customers pay prices that vary by the hour to reflect the actual cost 
of electricity.

Seasonal Rates The year is divided into different seasons, commonly winter and 
summer, each of which have distinct rates. Prices are higher in peak 
seasons to reflect seasonal variation in the cost of supplying energy.

Time-of-Use (TOU) The day is divided into time periods which define peak and off-peak 
hours. Prices are higher during the peak period hours to reflect the 
higher cost of supplying energy during that period.

Variable Peak Pricing (VPP) During pre-defined peak periods, customers pay a rate that varies by 
utility to reflect the actual cost of electricity.



brattle.com | 53

300+ trials have been conducted with 
time-varying rates to see if customers 
respond to price incentives 
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There is compelling evidence from  300+ 
pilots showing that customers respond to 
price changes 
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Transitioning to modern rate designs 
will require a careful process  

1. Select rate design for 
deployment

2. Compute bill changes

3. Understand which 
customers will see 
adverse bill impact

4. Re-run bill impact 
analysis with DR

5. Consider remedies to 
adverse bill impact

6. Conduct focus groups 7. Run a pilot to measure 
response

8. Determine rollout 
strategy

9. Track deployment of 
modern rate design
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It will be essential to know how modern 
rate designs will affect customer bills

Some customers will see higher bills while others will see 
lower bills (unless they change their load shape)
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If the adverse bill impacts are significant 
for certain customers, consider instituting 
one of these remedies

Remedy Implementation

Gradualism Roll out the new rates gradually for each rate design element. For example, to introduce a TOU 
rate, if the peak price will be 25 ¢/kWh and the current tariff is 15 ¢/kWh, implement a peak 
price of 17 ¢/kWh in the first year and increase it annually by 2 ¢/kWh until it reaches 25 
¢/kWh.

Bill Protection Provide customers with bill protection for a limited period of time so that they pay the lower of 
their old and new bill.

Optional Rates Make the new rate design optional for vulnerable customers, mandatory for the largest 
customers, and the default for all other customers.

Financial Assistance Provide customers with adverse bill impacts financial assistance for a limited period of time.

Enabling Technologies Install enabling technologies such as smart thermostats on customer premises.

Two-staged Rollout Structure the rate into two stages, where the first stage charges customers the current rate if 
their usage resembles a historical reference period, and the second stage exposes them to the 
new rate.
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Conclusions 

Renewable energy is going to play a significant role in the 
grid of the future 

Demand response is undergoing revolutionary change, 
evolving from load management and peak clipping into DR 
2.0, centered on load flexibility which will optimize the 
integration of renewable energy into the grid, while 
lowering customer bills

Modern rate designs are an essential component of DR 2.0 
and they can be rolled out without creating a customer 
backlash 
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Appendix A:
The LoadFlex Model
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The LoadFlex Modeling Framework

3
Develop 8,760 hourly 

avoided costs

Combine hourly 
costs to create 
stacked value 

profile

Allocate 
marginal costs 

based on hourly 
LOLP

2
Establish marginal costs and 

market depth

• Generation capacity value   

• Frequency regulation value

• Generic & targeted T&D value

• Energy value

4
Optimally dispatch programs 

and calculate B/C metrics

Simulate 
hourly 

optimized 
dispatch

Calculate 
total benefits 
across value 

streams

5
Identify cost-effective 

incentive and participation

Establish 
relationship 

between 
adoption and 

incentives

Identify 
economic 

incentive level 
and associated 
participation

6
Estimate incremental cost-

effective DR potential 

Calculate cost-
effective 

potential by 
program

Estimate 
portfolio 

impacts after 
participation 

overlap

• Build database of new DR and flexible 
load programs 

• Estimate per-participant costs and 
participation

• Identify value proposition and 
applicable grid services 

• Establish load impacts and 
operational  constraints

1
Parameterize DR 

programs

1 2 3

4 5 6
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Per-participant impacts

Per-participant impacts are derived from program experience, the 
experience of programs in other jurisdictions, and a review of 
engineering studies that identify theoretical load flexibility potential

For example, the impacts of 
time-varying pricing programs 
are based on a review of more 
than 300 experimental and 
non-experimental  pricing 
treatments across over 60 
pilot programs.  Price 
response is expressed as a 
function of the assumed peak-
to-off-peak price ratio in the 
time-varying rates0%
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Peak to Off-Peak Price Ratio
Results shown only for price ratios less than 20-to-1 and for treatments that did not include automating technology such as smart thermostats.

Relationship Between Price Ratio and Response



brattle.com | 62

Participation is modeled as a function of 
each program’s participation incentive 
level

This allows for identification of the incentive level (and associated 
enrollment rate) that produces a benefit-cost ratio of 1.0

Relationship Between Adoption and Incentive Relationships from 
market research are 
combined with observed 
participation rates from 
other jurisdictions to 
establish adoption 
functions for each DR 
program
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DR program dispatch maximizes “stacked 
benefits” subject to operational constraints

Each DR program is dispatched against an hourly price series that 
includes an allocation of energy and capacity costs (based on LOLP)

Chronological Allocation of Marginal Costs
(Illustration for Week of July 29)

Unique operational 
characteristics of each 
DR program are 
accounted for in the 
dispatch.  For instance, 
curtailment of air-
conditioning load is 
limited to 75 hours 
during summer 
months.  Other 
program types, such as 
C&I Auto-DR, are less 
constrained but subject 
to hourly and seasonal 
variability in curtailable 
load.

Monday 
July 29, 2030

Sunday 
August 4, 2030
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