SPP's Proposed Ramp Product

INITIAL RECOMMENDATIONS FOR MAXIMIZING THE BENEFITS OF A RAMPING PRODUCT

PRESENTED TO

Holistic Integrated Tariff Team Previously Presented to SPP MWG Meeting on 9/11/18

PRESENTED BY

Johannes Pfeifenberger Kathleen Spees John Tsoukalis **Judy Chang**

October 23, 2018

THE Brattle GROUP

Overview: Ramping Products Could Offer Significant Benefits to the SPP Region

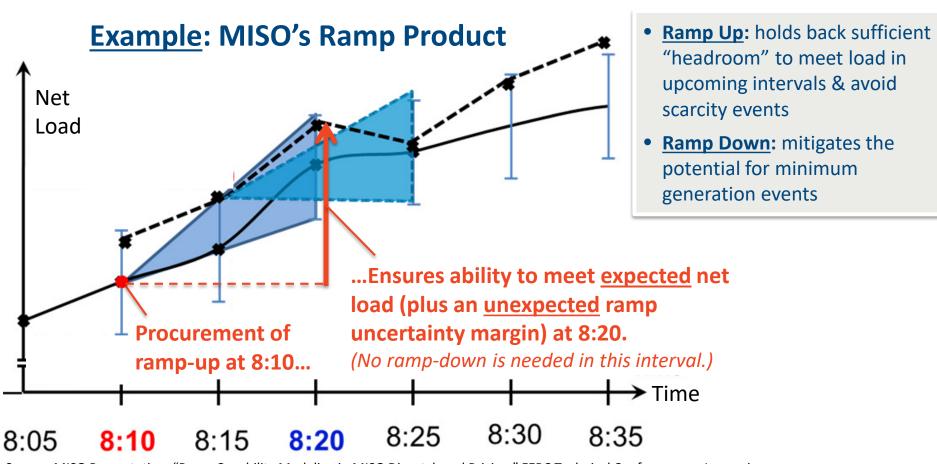
We support SPP staff and MMU recommendations to introduce a market-based "ramp" product to help manage increases in net load variability and ramp scarcity events

We offer a number of recommendations for maximizing the benefits of ramping products by:

- 1. Developing **ramping product definitions** that are driven by underlying system needs
- Establishing efficient price formation based on the willingness to pay for varying quantities of ramping reserves
- 3. Enabling technology-neutral, market-based procurement
- Ensuring that ramp products are aligned with other design elements and potential reforms

Adapted from our full paper:

Initial Comments on SPP's Draft Ramp Product Report


Ramping Products Are Needed to Manage Growing Net Load Variability

Ramp products are needed to manage a distinct new system need that is not yet managed by any other market product

Product Needed for: Manage increasing ramping and net load variability Ramp Up & Down, between dispatch intervals (i.e. capability to meet net load **Possibly Multiple** ramps over 10 min, 30 min, or 1+ hours) **Timeframes** Contingency Reserves Respond to generation and transmission outages Spinning & **Supplemental** Manage net load variability within a 5-minute dispatch Regulation Up & Down interval Meeting customer demand **Energy**

What a Ramping Product Might Look Like

Ramping capability procured in the current interval ensures the ability to meet expected and unexpected ramping needs in future intervals

Source: MISO Presentation, "Ramp Capability Modeling in MISO Dispatch and Pricing," FERC Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software, June 27-29, 2016.

MMU-Recommended Design Principles

We support the MMU's five recommended ramp product design principles as presented in the 2017 SOM Report:

- Two products* ramp capability up and ramp capability down
- Co-optimization with energy and other products to ensure the most economical solution
- Opportunity cost basis for pricing
- No limitations on resource type as long as the resource can reliably provide the required ramp
- Consideration of both expected and unexpected ramping needs

In <u>our comments</u>, we also present a number of additional recommendations to maximize the benefit that ramp products can provide to the SPP market and its participants

^{*} We agree that there should be at least two products for ramp-up and ramp-down, but recommend evaluating whether there is a need for additional ramping products to meet ramping needs at multiple forward timeframes

Design Should be <u>Driven by System Needs</u>

The design of the ramping product should be tailored to address SPP's unique patterns of net load variability and rampdriven shortages:

- Meet multi-interval load following needs that are not already met by other market products such as regulating reserves
- Possibly include several ramp products for different time horizons as distinct ramping requirements emerge (start with the alreadyidentified need for a 5-10 min product)
- Meet both expected and unexpected ramping needs
- Ramp products should be procured on a day-ahead basis with adjustments in the real-time market
- Consider lessons learned and product design from other markets including MISO and CAISO; but ensure that the design recognizes how SPP differs from other markets

Ramp Should Be Procured at an Efficient Price

Efficient price formation can ensure that ramping needs are achieved cost-effectively via:

- Co-optimization with energy and other products and opportunity cost basis for pricing
- Alignment with proper scarcity pricing in energy and ancillary services markets
 - If real-time prices are applied to unresponsive ramp-dispatch, scarcity pricing will provide proper performance incentives
 - Real-time price volatility will increase as more intermittent generation is added,
 but real-time market is only 0.05% to 1.5% the size of day-ahead settlements
- Cost-effectiveness ensured via economic analysis of:
 - The value proposition of ramp up (to avoid scarcity events and out-of-market unit commitments) and ramp down (to avoid wind curtailments and minimum generation events)
 - An appropriate willingness to pay for varying quantities of ramp (which can be incorporated into the day-ahead and real-time market)

Ramp Should be Enable <u>Technology-Neutral</u>, <u>Market-Based</u> Procurement

Ramping can be an effective in-market tool for meeting system variability needs from a broad set of resources, by:

- Ensuring all resource types can participate (thermal, demand response, storage, renewables, hydro)
 - Technical requirement and qualified MW is based on the ability to contribute to meeting system ramping needs within the relevant timeframe (e.g. within the 5-10 minutes)
- Enabling non-spinning quick-start resources and demand response to participate as long as they can respond within the necessary timeframe

Ramp Should Align with Other Design Elements and Potential Reforms

The new ramping product will use a transparent, market-based product, reduce reliance on non-priced and manual interventions. To best align with other design elements, the ramp product can:

- Integrate with SPP's Instantaneous Load Capacity (ILC) process to reduce the need for (unpriced) procurement of headroom to address intra-hour ramping needs
- Reduce reliance on RUC, ST-RUC, and manual RUC processes that tend to suppress market prices and introduce out-ofmarket uplift costs
- Recognize that ramp products and look-ahead real-time dispatch optimization are complementary (if that is ultimately implemented by SPP)

How Ramp Can Complement Other Elements of SPP's Market Design

Market-based ramp products will enhance the performance of the existing market design and future enhancements

Ramping Products Will Better Support Existing Market Systems

- Reduce reliance on ILC, RUC, and ST-RUC for unit commitments (which are not reflected in market prices)
- Reduce out-of-market uplift payments
- Reduce the frequency and severity of contingency and regulating reserve shortages and scarcity pricing events
- Reduce the frequency of minimum generation events
- Reduce the quantity of wind curtailments

Ramp Product Will Be <u>Complementary</u> to Potential Reforms

But there is no need to implement other reforms at the same time as introducing ramp products.

- Look-ahead real-time SCED
- Enhanced scarcity pricing
- Refined ancillary service products that may be needed to support other types of system needs

Takeaways

- Ramp products have the potential to offer significant reliability and economic benefits to the SPP region
 - Reduce frequency and magnitude of ramp-related scarcity events
 - Co-optimization increases overall market efficiency, reduced total costs, and results in better pricing
 - Reduce out-of-market operational actions that distort market prices
- Benefits can be maximized if the design is driven by best practices:
 - Driven by underlying system needs
 - Efficient price formation
 - Technology-neutral participation of all resource types
 - Alignment with existing design elements and potential reforms

Author Contact Information

JOHANNES PFEIFENBERGER

Principal | Boston

Hannes.Pfeifenberger@brattle.com

+1.617.864.7900

KATHLEEN SPEES

Principal | Washington, DC

Kathleen.Spees@brattle.com
+1.202.419-3390

JOHN TSOUKALIS
Senior Associate | San Francisco
John.Tsoukalis@brattle.com
+1.415.217.1009

JUDY CHANG

Principal | Boston

Judy.Chang@brattle.com
+1.617.234.5630

Our Practices and Industries

ENERGY & UTILITIES

Competition & Market Manipulation

Distributed Energy Resources

Electric Transmission

Electricity Market Modeling & Resource Planning

Electrification & Growth

Opportunities

Energy Litigation

Energy Storage

Environmental Policy, Planning and Compliance

Finance and Ratemaking

Gas/Electric Coordination

Market Design

Natural Gas & Petroleum

Nuclear

Renewable & Alternative Energy

LITIGATION

Accounting

Analysis of Market Manipulation

Antitrust/Competition

Bankruptcy & Restructuring

Big Data & Document Analytics

Commercial Damages

Environmental Litigation

& Regulation

Intellectual Property

International Arbitration

International Trade

Labor & Employment

Mergers & Acquisitions

Litigation

Product Liability

Securities & Finance

Tax Controversy

& Transfer Pricing

Valuation

White Collar Investigations

& Litigation

INDUSTRIES

Electric Power

Financial Institutions

Infrastructure

Natural Gas & Petroleum

Pharmaceuticals

& Medical Devices

Telecommunications,

Internet, and Media

Transportation

Water

Our Offices

