Generation Interconnection and Transmission Planning

PRESENTED BY
Johannes Pfeifenberger

PREPARED FOR
ESIG Special Topic Workshop

August 9, 2022
U.S. Transmission Needs are currently identified through …

These solely reliability-driven processes account for > 90% of all transmission investments:
- None involve any assessments of economic benefits (i.e., cost savings offered by the new transmission)

Generation interconnection processes often have become the primary tool (and barrier) to support public policy goals for clean energy

Planning for economic & public-policy projects results in less than 10% of all U.S. transmission investments

Interregional planning processes are large ineffective:
- Essentially no major interregional transmission projects have been planned and built in the last decade
- Numerous national studies show that more interregional transmission is needed to reduce total system costs

- **Current RTO Regional Transmission Planning Processes**
 - **Local TO Reliability Projects**
 - Upgrades to meet local standards
 - **Generator Interconnection (GI) Projects**
 - Reliability upgrades for GI requests
 - **Long Term Transmission Service Projects**
 - Reliability upgrades for Tx Service Requests

 - **Regional Reliability Projects**
 - Addresses remaining reliability needs

 - **Regional Economic & Public Policy Projects**
 - Often addresses only a narrow set of remaining needs

 - **Joint RTO Interregional Planning Processes**
 - View of remaining needs is often narrow, resulting in few to no projects
Current U.S. Transmission Planning and Generation Interconnection Processes = Higher Total Costs

Current planning processes do not yield the most valuable transmission infrastructure and result in higher overall costs to electricity customers:

- Reactive, reliability-driven planning results in piecemeal, higher-cost transmission solutions
- Silo-ed generation interconnection, local and regional reliability planning, and public policy planning processes cannot identify most cost-effective solutions
- Failure to evaluate multiple benefits of most transmission projects: does not result in the selection of the highest-value projects that reduce system-wide costs
- Failure to evaluate the full range of plausible futures (to explicitly account for long-term uncertainties): results in higher-cost outcomes when the future deviates from base-case planning assumptions, which usually are based on “business-as-usual” or “current-trends” forecast
- Failure to consider interregional transmission solutions: result in higher-cost regional and local transmission investments

More pro-active, multi-value, and scenario-based transmission planning and generation interconnection processes are needed
#1 Challenge: The Generation Interconnection Process

89% of renewable generation developers see generation interconnection time requirements and costs as the single biggest barrier to achieving clean-energy goals.\(^1\)

Number of Months from Interconnection Request to Interconnection Agreement

See: [Generation, Storage, and Hybrid Capacity in Interconnection Queues](https://.lbl.gov) | [Electricity Markets and Policy Group (lbl.gov)](https://lbl.gov)

Age of Projects Currently in GI Queues

- **500+ Days Old**
 - MISO: 98%
 - SPP: 78%
 - PJM: 48%
 - CAISO: 100%
 - NYISO: 100%

- **1000+ Days Old**
 - MISO: 82%
 - SPP: 59%
 - PJM: 14%
 - CAISO: 67%
 - NYISO: 82%

\(^1\) Standing in Line: How Congested Interconnection Queues Are Slowing Renewable Build-Out, LevelTen Energy, 2021
#1 Challenge: The Generation Interconnection Process

GI study criteria often trigger “deep” and expensive network upgrades:

Enel example: stringent GI study criteria trigger distant reliability violations even for non-firm, energy-only interconnection requests.

This exponentially increases the complexity and time requirement of the interconnection process.

Distant “violations” (if and when they might occur), can generally be “managed” more cost effectively through other means (e.g., market redispatch).

Real Life Example

300 MW ERIS SPP Interconnection

- Shared upgrades with 14 projects
- 4 SPP, 5 MISO, 3 AECI studies so far
- Upgrade criteria and distance
 - **SPP**
 - >3% TDF under N-0
 - 2% voltage change (group)
 - Transformer and capacitor
 - **MISO**
 - 1% voltage change (group)
 - Capacitors/statcoms
 - **AECI**
 - 3% of facility rating (group)
 - 8 69 kV lines and transformers

Significant Differences in Generation Interconnection Processes

Some RTOs are able to interconnect disproportionately more generation, and have been able to do so more quickly.

2021 US capacity additions

<table>
<thead>
<tr>
<th>ISO/RTOS</th>
<th>Wind</th>
<th>Solar</th>
<th>Gas</th>
<th>Other*</th>
<th>RTO Size</th>
<th>Capacity in Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERCOT</td>
<td>5,139</td>
<td>2,954</td>
<td>1,058</td>
<td>2,000</td>
<td>80 GW</td>
<td>135 GW</td>
</tr>
<tr>
<td>Outside ISO/RTOS</td>
<td>2,250</td>
<td>4,000</td>
<td>1,500</td>
<td>1,500</td>
<td>200 GW</td>
<td>330 GW</td>
</tr>
<tr>
<td>MISO</td>
<td>1,000</td>
<td>500</td>
<td>1,000</td>
<td>500</td>
<td>150 GW</td>
<td>155 GW</td>
</tr>
<tr>
<td>PJM</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>180 GW</td>
<td>245 GW</td>
</tr>
<tr>
<td>SPP</td>
<td>2,425</td>
<td>2,425</td>
<td>2,425</td>
<td>2,425</td>
<td>95 GW</td>
<td>100 GW</td>
</tr>
<tr>
<td>CAISO</td>
<td>1,656</td>
<td>1,656</td>
<td>1,656</td>
<td>1,656</td>
<td>52 GW</td>
<td>160 GW</td>
</tr>
<tr>
<td>NYISO</td>
<td>359</td>
<td>359</td>
<td>359</td>
<td>359</td>
<td>42 GW</td>
<td>75 GW</td>
</tr>
<tr>
<td>ISO-NE</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>32 GW</td>
<td>30 GW</td>
</tr>
</tbody>
</table>

Planning regions with the most ambitious state clean energy standards (i.e., east and west coast states) are lagging behind regions such as Texas and the Midwest:

- ERCOT: added 10% of system capacity in 2021
- NYISO and ISO-NE: only 1%
- All others: 2-4%

Data compiled Jan. 11, 2022.

* Includes hydro, biomass, oil, geothermal and energy storage capacity.

Source: S&P Global Market Intelligence

See also: Generation, Storage, and Hybrid Capacity in Interconnection Queues | Electricity Markets and Policy Group (lbl.gov)
Five Elements of Generation Interconnection Need to be Addressed

Improving generation interconnection requires addressing all five elements of the GI process. Current discussions focused mostly on Nos. 1 and 5 (NOPR on Nos. 1 and 4)

1. **GI Process and Queue Management**: individual vs. cluster studies, type of studies and contractual agreements, readiness criteria, financial deposits, study and restudy sequences, etc.

2. **GI Scope and “Handoff” to Regional Transmission Planning**: are major (“deep”) network upgrades triggered by incremental generation interconnection requests or handled through regional transmission planning?

3. **GI Study Approach and Criteria**: study assumptions, modeling approaches, and specific criteria differ significantly across regions (e.g., ERIS vs. NRIS study differences, injection levels studied, are market-based redispatch opportunities considered?)

4. **Selecting Solutions to Address the Identified Criteria Violations**: most regions select only traditional transmission upgrades to address criteria violations; grid-enhancing technologies, such as power-flow-control devices or dynamic line ratings, are not typically considered or accepted

5. **Cost Allocation**: most regions require the interconnecting generator (or group of generators) to pay for all upgrades identified, even though (a) there may be significant regional benefits to loads and other market participants and (b) more cost effective (multi-value) regional solutions may exist
Option for Improving the Generation Interconnection Process

Reducing the scope of upgrades triggered by generation interconnection processes likely will be necessary to both accelerate and lower the cost of renewable interconnection:

- **Attractive: UK “Connect and Manage” (replaced prior “Invest and Connect”)**
 - Similar to ERCOT; reduced lead times by 5 years; network constraints addressed later (e.g., with congestion management)

- **ERCOT’s generation interconnection process is perhaps most effective in the U.S.**
 - Efficient handoff of study roles by ERCOT and Transmission Owners limits restudy needs
 - Projects can be developed and interconnected within 2-3 years; in other regions, the interconnection study process itself may take longer than that
 - Upgrades focused only on local interconnection needs and are recovered through postage stamp
 - Network constraints managed through market dispatch – which imposes high congestion and curtailment risks on interconnecting generators ... in part due to ERCOT’s insufficiently proactive multi-value grid planning
 - See Enel working-paper.pdf (enelgreenpower.com) [Note: Brattle was not involved]

Generation interconnection based on “connect and manage” when combined with proactive transmission planning offers more timely and cost-effective solutions if:

- **Near-term needs** are quickly addressed through multi-value planning (beyond reliability)
- **Long-term needs** are proactively addressed through scenario-based long-term planning
Proactive Multi-Value Transmission Planning

Available experience points to **proven planning practices** that reduce total costs and mitigate risks by proactively addressing both near-term and long-term needs:

1. **Proactively plan for future generation and load** by incorporating realistic projections of the anticipated generation mix, public policy mandates, load levels, and load profiles over the lifespan of the transmission investment.

2. **Account for the full range of transmission projects’ benefits** and **use multi-value planning** to comprehensively identify investments that cost-effectively address all categories of needs and benefits.

3. **Address uncertainties and high-stress grid conditions explicitly through scenario-based planning** that takes into account a broad range of plausible long-term futures as well as real-world system conditions, including challenging and extreme events.

4. **Use comprehensive transmission network portfolios** to address system needs and cost allocation more efficiently and less contentiously than a project-by-project approach.

5. **Jointly plan inter-regionally across neighboring systems** to recognize regional interdependence, increase system resilience, and take full advantage of interregional scale economics and geographic diversification benefits.

Example of Proactive GI Process: MISO-SPP JTIQ

MISO’s and SPP’s Joint Targeted Interconnection Queue (JTIQ) Study shows that proactively studying a larger set of generation interconnection requests offers substantial cost savings

- **Goal:** Identify more comprehensive, cost-effective and efficient network upgrades than could be found through the RTO’s individual sequential interconnection queue and affected system coordination processes
 - Pooled GI requests for 5 (and 10) years both regions near seam

- **Result:** Seven-project, **$1.65 billion JTIQ Portfolio** expected to fully address the transmission needs along the MISO-SPP seam previously identified in MISO and SPP individual generation interconnection studies
 - Able to support 9 GW of existing generator interconnection requests and enable an additional 20 GW of projects near the SPP-MISO seam
 - Additionally yields estimated production cost savings of $724 million in MISO and $247 million in SPP
 - Generation interconnection costs: $58/kW with 100% participant funding; and $28/kW if production cost savings benefit to regional loads are netted

- **Individual GI process costs** average $100-130/kW across study years

See: MISO-SPP Joint Targeted Interconnection Queue Study (misoenergy.org), April 15, 2022 PowerPoint Presentation (misoenergy.org), and Tsuchida ESIG Case Study of MISO and SPP (August 2022, forthcoming)
Generation interconnection processes, studying one generator at a time, are ineffective in determining the cost-effective transmission solutions. More pro-active GI processes are needed:

- **For example**: A review of PJM generation [interconnection studies](https://example.com) for 15.5 GW of individual offshore wind plants identified $6.4 billion in onshore transmission upgrades ($400/kW)

- **In contrast**: the recent [PJM Offshore Wind Transmission Study](https://example.com) that proactive evaluated all existing state public policy needs identified only $3.2 billion in onshore upgrades for over 75 GW of renewable resources (up to 17 GW of offshore wind, 14.5 GW of onshore wind, 45.6 GW of solar, and 7.2 GW of storage) ($40/kW)

- Upgrades also provide substantial PJM-wide economic benefits: reduced congestion, curtailments, emissions (App B)
Scenario-based planning is a process first developed in the 1940s and 1950s as a tool for integrating uncertainties into long-term strategic planning:

- Used by Shell with great success since the 1970s for long-term planning under large uncertainties
- Assists planners to think, in advance, about the many ways the future may unfold and how to respond effectively and flexibly as the future becomes reality
- Ranks among the top-ten management tools in the world today
- Scenario = one fully-defined, plausible view of what the future may look like

Scenario-based planning is a multi-step process (to better plan for the next decades):

1. Define scenarios of plausible futures by scanning the current reality, trends and forecasts, uncertainties, and important internal and external drivers
2. Develop a series of plans (initiatives, projects, policies, tactics) that support a certain scenario, work well in multiple scenarios, or are flexible and robust across all scenarios
3. Implement preferred plan and define indicators to alert planners that a certain future is likely to occur, so they can take action (e.g., change course to address the new developments)

See, e.g., Living in the Futures (hbr.org), Scenario Planning-A Review of the Literature.PDF (mit.edu)
Example: MISO Long-Term Transmission Planning (LRTP)

MISO’s LRTP effort simultaneously evaluated 20-year reliability, economic, and public policy needs for a diverse set of plausible “Futures” (scenarios)

MISO’s 2022 LRTP Process

- Develop scenario-based Futures with resource forecast and Siting
- Development of planning models utilizing Futures
- Identify potential transmission issues
- Apply appropriate cost allocation
- Recommend preferred solutions for MTEP implementation
- Evaluate the effectiveness of various solutions
- Proposals for solutions to issues

MISO’s Identified Long-Term Transmission Needs

Future 1

Futures 1, 2, 3

Source: MISO LRTP Roadmap March 2021
Example: MISO Long-Term Transmission Planning (LRTP)

Scenario-based LRTP ➔ First tranche of a new “least regrets” portfolio of multi-value transmission projects (MVPs)

MISO 2022 LRTP results

- **Tranche 1:** $10 billion portfolio of proposed new 345 kV projects for its Midwestern footprint
- **Supports interconnection of 53 GW of renewable resources**
- **Reduces other costs by $37-70 billion** (based on estimates for 7 benefit metrics)
- Portfolio of beneficial projects designed to benefit each zone within MISO’s Midwest Subregion
- Postage-stamp cost allocation within MISO’s Midwest Subregion

Source: 3-29-22 LRTP Presentation (misoenergy.org)
Advanced Grid Technologies: Fast and Cost Effective Solutions

Advanced, grid-enhancing transmission (GET) technologies can significantly and quickly increase the capability of the existing grid, offer low-cost solutions to address near-term reliability needs, and make new transmission more valuable and cost effective in the long-term

- Increasingly well-tested and commercially-applied technologies include: dynamic line rating, smart wires and flow control devices, grid-optimized storage, and topology optimization
- Can be deployed quickly to integrate renewables on the existing grid (see Chapter III of NY Power Grid Study)
- Brattle case study in SPP: DLR, topology optimization, and advanced power-flow controls can integrate 2,670 MW of renewable generation for $90 million
- Value proposition: more visibility of actual grid capability; shift flows to underutilized portions of the grid

Consideration of GETs needs to be expanded beyond addressing operational and seamrelated reliability and congestion needs – GETs should also be part of the standard set of available solutions to address both generation interconnection and transmission planning needs

- As low-cost solutions to address reliability needs identified in generation interconnection and near-term planning
- In long-term multi-value planning to make new transmission more cost effective and valuable, reducing system-wide costs
Integrating generation interconnection into more proactive transmission planning processes offers substantial advantages

- More cost-effective, holistic solutions can be identified to address the wide range of future needs
- The costs and time required to interconnect the large number of resources necessary to meet clean-energy goals can be reduced dramatically

The benefits of proactive planning increase for planning processes that:

1. Consider generation needs over longer time frames (i.e., a decade of already known resource needs, as opposed to one resource or one class year at a time)
2. Reduce the scope of network upgrades triggered by generation interconnection through more integrated, proactive transmission planning that simultaneously considers multiple needs (generation interconnection, local and regional reliability, economic benefits, and public policy needs)
3. Use proactive multi-value planning processes to address both urgent near-term needs and long-term needs
4. Look beyond regional seams to identify more cost-effective interregional solutions to the range of identified transmission needs (and minimize the scope of and uncertainties associated with “affected system studies”)
5. Rely on advanced transmission technologies to address identified needs
6. Improve and standardize study criteria
7. Utilize pragmatic cost allocations that are roughly commensurate with benefits received
Johannes P. Pfeifenberger, a Principal at The Brattle Group, is an economist with a background in electrical engineering and over twenty-five years of experience in wholesale power market design, renewable energy, electricity storage, and transmission. He also is a Visiting Scholar at MIT’s Center for Energy and Environmental Policy Research (CEEPR), a Senior Fellow at Boston University’s Institute of Sustainable Energy (BU-ISE), a IEEE Senior Member, and currently serves as an advisor to research initiatives by the U.S. Department of Energy, the National Labs, and the Energy Systems Integration Group (ESIG).

Hannes specializes in wholesale power markets and transmission. He has analyzed transmission needs, transmission benefits and costs, transmission cost allocations, and transmission-related renewable generation challenges for independent system operators, transmission companies, generation developers, public power companies, industry groups, and regulatory agencies across North America. He has worked on transmission matters in SPP, MISO, PJM, New York, New England, ERCOT, CAISO, WECC, and Canada.

He received an M.A. in Economics and Finance from Brandeis University’s International Business School and an M.S. and B.S. (“Diplom Ingenieur”) in Power Engineering and Energy Economics from the University of Technology in Vienna, Austria.
Brattle Reports on Transmission Planning

- **Well-Planned Electric Transmission Saves Customer Costs:** Improved Transmission Planning is Key to the Transition to a Carbon-Constrained Future
- **Toward More Effective Transmission Planning:** Addressing the Costs and Risks of an Insufficiently Flexible Electricity Grid
- **The Benefits of Electric Transmission:** Identifying and Analyzing the Value of Investments
- **The Value of Diversifying Uncertain Renewable Generation through the Transmission System**
- **Transmission Planning for the 21st Century:** Proven Practices that Increase Value and Reduce Costs
- **Interregional Roadmap**

Summarizes proven approaches to quantifying various benefits.
Additional Reading on Transmission

Pfeifenberger, Proactive, Scenario-Based, Multi-Value Transmission Planning, Presented at PJM Long-Term Transmission Planning Workshop, June 7, 2022.

<table>
<thead>
<tr>
<th>ENERGIES & UTILITIES</th>
<th>LITIGATION</th>
<th>INDUSTRIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competition & Market Manipulation</td>
<td>Accounting</td>
<td>Electric Power</td>
</tr>
<tr>
<td>Distributed Energy Resources</td>
<td>Analysis of Market Manipulation</td>
<td>Financial Institutions</td>
</tr>
<tr>
<td>Electric Transmission</td>
<td>Antitrust/Competition</td>
<td>Infrastructure</td>
</tr>
<tr>
<td>Electricity Market Modeling & Resource Planning</td>
<td>Bankruptcy & Restructuring</td>
<td>Natural Gas & Petroleum</td>
</tr>
<tr>
<td>Electrification & Growth Opportunities</td>
<td>Big Data & Document Analytics</td>
<td>Pharmaceuticals & Medical Devices</td>
</tr>
<tr>
<td>Energy Litigation</td>
<td>Commercial Damages</td>
<td>Telecommunications, Internet, and Media</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>Environmental Litigation & Regulation</td>
<td>Transportation</td>
</tr>
<tr>
<td>Environmental Policy, Planning & Compliance</td>
<td>Intellectual Property</td>
<td>Water</td>
</tr>
<tr>
<td>Finance and Ratemaking</td>
<td>International Arbitration</td>
<td></td>
</tr>
</tbody>
</table>
Our Offices

BOSTON BRUSSELS CHICAGO LONDON
MADRID NEW YORK ROME SAN FRANCISCO
SYDNEY TORONTO WASHINGTON, DC