Making GEBs a "Win" for Customers and Utilities

PRESENTED BY

Ryan Hledik *The Brattle Group*

PREPARED WITH

Andy Satchwell Berkeley Lab

AUGUST 22, 2022

PREPARED FOR

2022 ACEEE Summer Study

First, what's a "GEB"?

The simple definition: **EE and DR for the residential and commercial sectors**

But it's more than that:

EFFICIENT

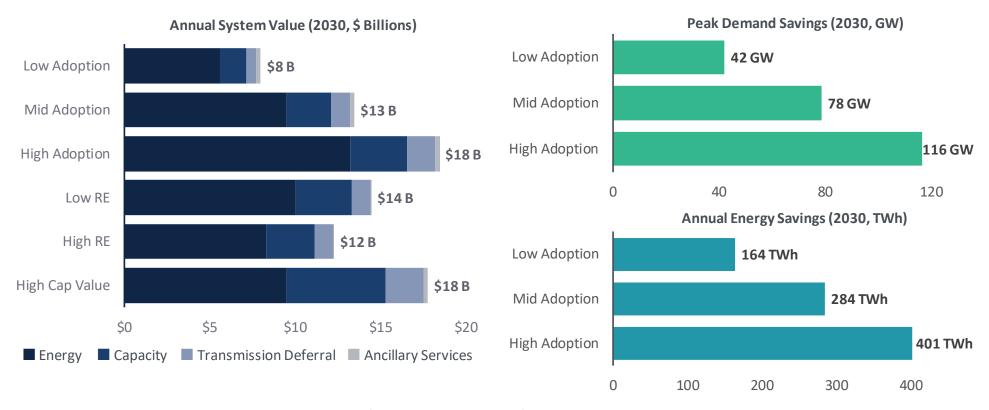
Persistent low energy use minimizes demand on grid resources and infrastructure

CONNECTED

Two-way communication with flexible technologies, the grid, and occupants

SMART

Analytics supported by sensors and controls cooptimize efficiency, flexibility, and occupant preferences

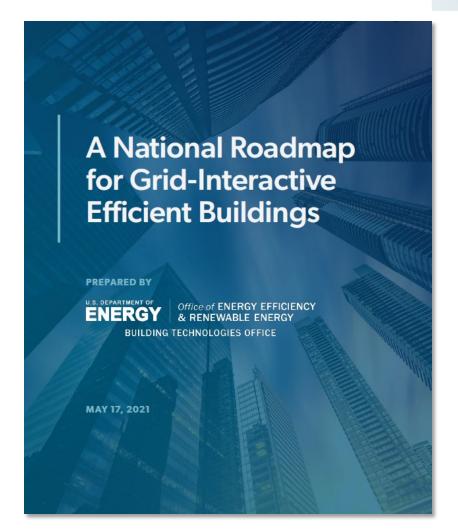


FLEXIBLE

Flexible loads and distributed generation/ storage can be sued to reduce, shift, or modulate energy use

GEBs are a \$100+ billion opportunity

GEBs could more than triple existing EE and DR capability in buildings. This would save up to \$18 billion per year in power system costs by 2030 - roughly \$100 to \$200 billion between 2020 and 2040.


Then why aren't there more GEBs?

Barriers exist at each point in the supply chain

 See DOE's A National Roadmap for GEBs for (much!) more discussion

Our Summer Study paper focuses on overcoming utility and regulatory hesitance in deploying GEBs

- Utilities will play a central role in GEB development and implementation
- They interface with all major players in the supply chain

For more information:

https://gebroadmap.lbl.gov/

Key barriers to utility deployment of GEBs

- Financial disincentive
- Perceived GEB performance and reliability limitations
- Lack of utility-wide integration into resource planning and operations

We explore emerging models for overcoming these barriers, enabling utilities to facilitate GEB adoption and fundamentally benefit from its development, while also providing benefits to customers.

"Win-win" models are emerging in three areas

Utility business models

- Financial performance incentives
- Data services and other commercial opportunities

Pricing

- Subscription pricing
- Innovations in DER rate design

Utility infrastructure investments

- Facilitating electrification through EE and demand flexibility
- Investing in smart technology

Our Summer Study paper includes 13 mini-case studies in these areas

Example 1: Subscription pricing

Subscription pricing is an entirely fixed monthly electricity bill. It's a "subscription fee" for electricity.

Common subscription pricing design elements:

- The customer's subscription pricing offer is based on their average expected bill under the standard rate, plus a risk premium
- Risk premium is typically less than 10% of bill
- Fixed contract period (typically one-year)
- No true-up for changes in usage

The fixed bill offer can be coupled with EE and DR requirements to provide environmental and economic benefits.

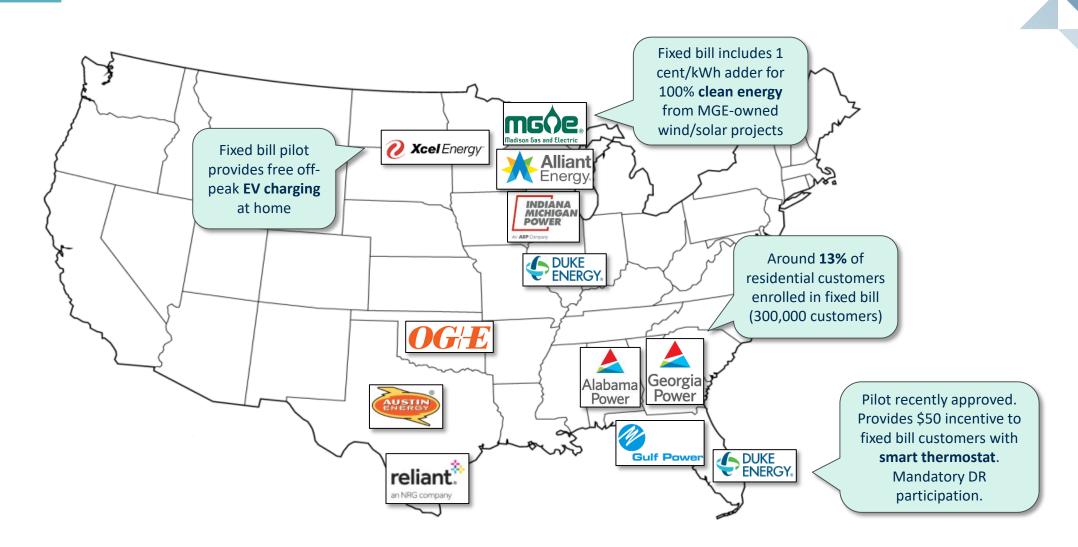
Subscription pricing makes EE and DR more attractive to customers

Subscription pricing

Bundled services (incl. EE and DR)

The bundled services align subscription pricing with corporate & policy objectives

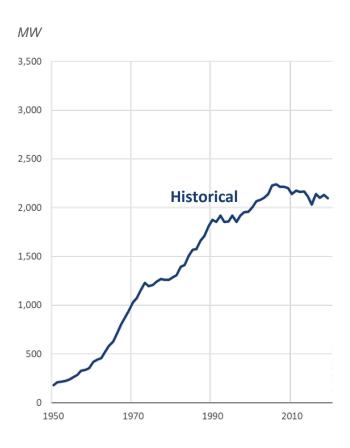
Example 1: Subscription pricing (cont'd)


Customer benefits

- ✓ Rate choice
- ✓ Simplicity
- ✓ Improved predictability for budgeting
- ✓ No surprises
- ✓ No weather risk
- ✓ No true-up
- ✓ Potential bill reduction through EE and DR

Utility benefits

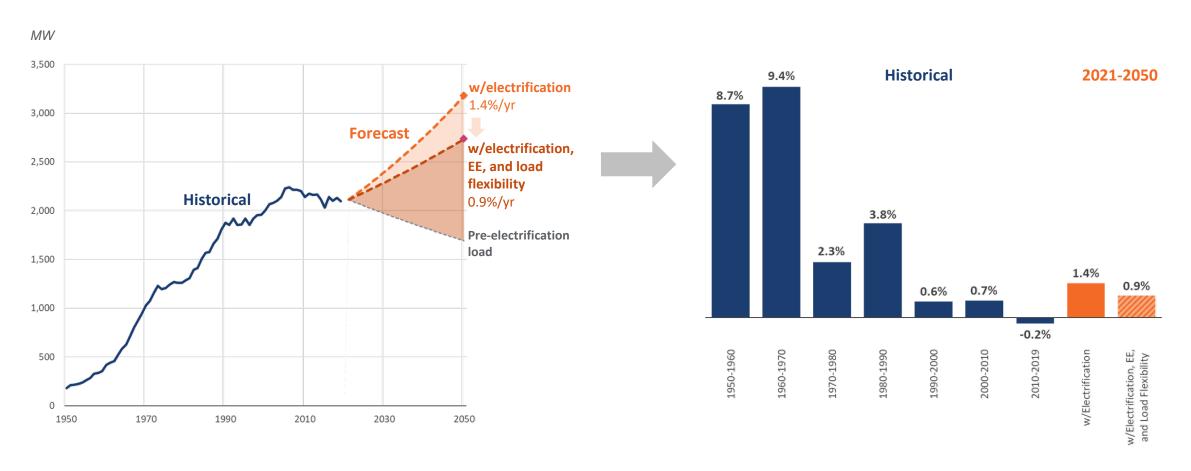
- ✓ Reduced high bill complaints
- ✓ Increased customer satisfaction
- ✓ Revenue stability
- ✓ Potential for higher earnings
- ✓ Aligns with increasingly fixed nature of utility costs
- ✓ Facilitates achievement of policy goals


Example 1: Subscription pricing (cont'd)

Example 2: Facilitating electrification through EE and demand flexibility

Pepco DC System Peak Demand with Electrification

Example 2: Facilitating electrification through EE and demand flexibility (cont'd)


Pepco DC System Peak Demand with Electrification

Example 2: Facilitating electrification through EE and demand flexibility

Pepco DC System Peak Demand with Electrification

Average Annual Growth Rate

Example 2: Facilitating electrification through EE and demand flexibility (cont'd)

EE and DF will be keys to making decarbonization affordable and reliable

EE and DF will enable utility infrastructure investment, rather than reducing it

Pepco DC's Climate Solutions Plan is a good example

- 62 customer programs, including electrification with EE and DF
- Highly cost-effective (benefit-cost ratio of 1.7 to 1)

Pepco's 5-year Climate Solutions Plan Budget

Total Budget Estimate: \$313 million (approx.)

demand flexibility: 35% of total portfolio

Transportation electrification, building electrification, grid infrastructure, community DERs, advanced software, and more

Three recommendations for success

- Inclusive stakeholder processes... with an action plan
- Piloting novel concepts... with a blueprint for full-scale deployment
- Utility partnerships with technology providers... with flexible platforms