Transmission Planning for a Changing Generation Mix

PREPARED BY
Johannes Pfeifenberger
Joseph DeLosa

PRESENTED TO
OPSI 2022 Annual Meeting
Indianapolis, IN

October 18, 2022
Transmission Investment is at Historically High Levels

$20-25 billion in annual U.S. transmission investment, but:

- More than 90% of it justified solely based on reliability needs without benefit-cost analysis
 - About 50% solely based on “local” utility criteria (without going through regional planning processes)
 - The rest justified by regional reliability and generation interconnection needs

- While significant experience with transmission benefit-cost analyses exists, very few projects are justified based on economics and overall cost savings

Does not include transmission investments of non-jurisdictional entities (e.g., BPA, TVA, WAPA, ...)

Silo-ed, Reliability-focused U.S. Transmission Planning Cannot Identify the Most Cost-Effective Solutions

These solely reliability-driven processes account for > 90% of all transmission investments
- None involve any assessments of economic benefits (i.e., cost savings offered by the new transmission)

Incremental generation interconnection has become the primary tool (and efficiency barrier) to support public policy goals

Planning for economic & public-policy needs results in less than 10% of all U.S. transmission investments

Interregional planning processes are large ineffective
- Essentially no major interregional transmission projects have been planned and built in the last decade
- Numerous national studies show that more interregional transmission is needed to reduce total system costs

More proactive multi-value planning is needed to achieve cost-effective planning outcomes
“Baseline” and “Supplemental” projects account for the large majority of PJM transmission investments, with trends toward fewer Baseline projects and fewer projects triggered by NERC/PJM criteria.

- This trend may be inconsistent with the large-scale, regional system needs associated with PJM states’ clean-energy goals and mandates.
- More proactive multi-driver planning will be necessary to cost-effectively meet regional needs.
- PJM’s State Agreement Approach (SAA), if used more broadly, can help but will not be a substitute for achieving most cost-effective solutions.
FERC NOPR efforts and available experience point to proven planning practices that can reduce total system costs and risks, but are rarely used today:

1. **Proactively plan for future generation and load** by incorporating realistic projections of the anticipated generation mix, public policy mandates, load levels, and load profiles over the lifespan of the transmission investment.

2. **Account for the full range of transmission projects’ benefits** and use **multi-value planning** to comprehensively identify investments that cost-effectively address all categories of needs and benefits.

3. **Address uncertainties and high-stress grid conditions explicitly through scenario-based planning** that takes into account a broad range of plausible long-term futures as well as real-world system conditions, including challenging and extreme events.

4. **Use comprehensive transmission network portfolios** to address system needs and **cost allocation** more efficiently and less contentiously than a project-by-project approach.

5. **Jointly plan inter-regionally across neighboring systems** to recognize regional interdependence, increase system resilience, and take full advantage of interregional scale economics and geographic diversification benefits.

Improving generation interconnection requires addressing all five elements of the GI process (with most current reform discussions focused mostly on Nos. 1 and 5):

1. **GI Process and Queue Management**: individual vs. cluster studies, type of studies and contractual agreements, readiness criteria, financial deposits, study and restudy sequences, etc.

2. **GI Scope and “Handoff” to Regional Transmission Planning**: are major (“deep”) network upgrades triggered by incremental generation interconnection requests or handled through regional transmission planning?

3. **GI Study Approach and Criteria**: study assumptions, modeling approaches, and specific criteria differ significantly across regions (e.g., ERIS vs. NRIS study differences, injection levels studied, are market-based redispatch opportunities considered?)

4. **Selecting Solutions to Address the Identified Criteria Violations**: most regions select only traditional transmission upgrades to address criteria violations; grid-enhancing technologies, such as power-flow-control devices or dynamic line ratings, are not typically considered or accepted.

5. **Cost Allocation**: most regions require the interconnecting generator (or group of generators) to pay for all upgrades identified, even though (a) there may be significant regional benefits to loads and other market participants and (b) more cost effective (multi-value) regional solutions may exist.
Benefits of Proactive Planning: PJM’s 75 GW Renewable GI Study

Generation interconnection processes, studying one generator at a time, are ineffective in determining the cost-effective transmission solutions. More pro-active GI processes are needed:

- **For example:** A review of PJM generation interconnection studies for 15.5 GW of individual offshore wind plants identified $6.4 billion in onshore transmission upgrades ($400/kW)

- **In contrast:** the recent [PJM Offshore Wind Transmission Study](#) that proactive evaluated all existing state public policy needs identified only **$3.2 billion in onshore upgrades for over 75 GW of renewable resources** (up to 17 GW of offshore wind, 14.5 GW of onshore wind, 45.6 GW of solar, and 7.2 GW of storage) ($40/kW)

- Upgrades also provide substantial PJM-wide economic benefits: reduced congestion, curtailments, emissions (App B)
Experience with Proactive Long-term Planning Processes

Although still rarely used, significant experience exists with successful proactive, multi-benefit, portfolio-based transmission planning efforts:

<table>
<thead>
<tr>
<th>Source: Transmission Planning for the 21st Century: Proven Practices that Increase Value and Reduce Costs (brattle.com)</th>
<th>Proactive Planning</th>
<th>Multi-Benefit</th>
<th>Scenario-Based</th>
<th>Portfolio-Based</th>
<th>Interregional Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO TEAM (2004)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATC Paddock-Rockdale (2007)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERCOT CREZ (2008)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MISO RGOS (2010)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>EIPC (2010-2013)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PJM renewable integration study (2014)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>NYISO PPTPP (2019)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>ERCOT LTSA (2020)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPP ITP Process (2020)</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJM Offshore Tx Study (2021)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MISO RIIA (2021)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Australian Examples:</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>- AEMO ISP (2020)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>- Transgrid Energy Vision (2021)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Understanding Transmission-Related Cost Savings and Other Benefits

The wide-spread nature of transmission benefits creates challenges in estimating benefits (and overall cost savings) and how they accrue to different users

- **Broad in scope, providing many different types of benefits**
 - Increased reliability and operational flexibility
 - Reduced congestion, dispatch costs, and losses
 - Lower capacity needs and generation costs
 - Increased competition and market liquidity
 - Renewables integration and environmental benefits
 - Insurance and risk mitigation benefits
 - Diversification benefits (e.g., reduced uncertainty and variability)
 - Economic development from G&T investments

- **Wide-spread geographically**
 - Multiple transmissions service areas
 - Multiple states or regions

- **Diverse in their effects on market participants**
 - Customers, generators, transmission owners in regulated and/or deregulated markets
 - Individual market participants may capture one set of benefits but not others

- **Occur and change over long periods of time**
 - Several decades (50+ years), typically increasing over time
 - Changing with system conditions and future generation and transmission additions
 - Individual market participants may capture different types of benefits at different times
Examples: Scenario-based Multi-Value Transmission Planning

SPP 2016 RCAR, 2013 MTF

Quantified
1. production cost savings*
 - value of reduced emissions
 - reduced ancillary service costs
2. avoided transmission project costs
3. reduced transmission losses*
 - capacity benefit
 - energy cost benefit
4. lower transmission outage costs
5. value of reliability projects
6. value of mtg public policy goals
7. Increased wheeling revenues

Not quantified
8. reduced cost of extreme events
9. reduced reserve margin
10. reduced loss of load probability
11. increased competition/liquidity
12. improved congestion hedging
13. mitigation of uncertainty
14. reduced plant cycling costs
15. societal economic benefits

(Proposed Multi Value Project Portfolio, Technical Study Task Force and Business Case Workshop August 22, 2011)

MISO MVP Analysis

Quantified
1. production cost savings*
2. reduced operating reserves
3. reduced planning reserves
4. reduced transmission losses*
5. reduced renewable generation investment costs
6. reduced future transmission investment costs

Not quantified
7. enhanced generation policy flexibility
8. increased system robustness
9. decreased natural gas price risk
10. decreased CO₂ emissions output
11. decreased wind generation volatility
12. increased local investment and job creation

CAISO TEAM Analysis

(Proposed Multi Value Project Portfolio, Technical Study Task Force and Business Case Workshop August 22, 2011)

Quantified
1. production cost savings* and reduced energy prices from both a societal and customer perspective
2. mitigation of market power
3. insurance value for high-impact low-probability events
4. capacity benefits due to reduced generation investment costs
5. operational benefits (RMR)
6. reduced transmission losses*
7. emissions benefit

Not quantified
8. facilitation of the retirement of aging power plants
9. encouraging fuel diversity
10. improved reserve sharing
11. increased voltage support

(CPUC Decision 07-01-040, January 25, 2007, Opinion Granting a Certificate of Public Convenience and Necessity)

NYISO PPTN Analysis

(AC Upgrades)

Quantified
1. production cost savings*
 (includes savings not captured by normalized simulations)
2. capacity resource cost savings
3. reduced refurbishment costs for aging transmission
4. reduced costs of achieving renewable and climate policy goals

Not quantified
5. protection against extreme market conditions
6. increased competition and liquidity
7. storm hardening and resilience
8. expandability benefits

* Fairly consistent across RTOs

(brattle.com)
Scenario-based planning is a process first developed in the 1940s and 1950s as a tool for integrating uncertainties into long-term strategic planning:

- Used by Shell with great success since the 1970s for long-term planning under large uncertainties
- Assists planners to think, in advance, about the many ways the future may unfold and how to respond effectively and flexibly as the future becomes reality
- Ranks among the top-ten management tools in the world today
- Scenario = one fully-defined, plausible view of what the future may look like

Scenario-based planning is a multi-step process:

1. Define scenarios of plausible futures by scanning the current reality, trends and forecasts, uncertainties, and important internal and external drivers
2. Develop a series of plans (initiatives, projects, policies, tactics) that support a certain scenario, work well in multiple scenarios, or are flexible and robust across all scenarios
3. Implement preferred plan and define indicators to alert planners that a certain future is likely to occur, so they can take action (e.g., change course to address the new developments)

See also, e.g., Living in the Futures (hbr.org), Scenario Planning-A Review of the Literature.PDF (mit.edu)
Example: MISO Long-Term Transmission Planning (LRTP)

MISO’s LRTP effort simultaneously evaluated 20-year reliability, economic, and public policy needs for a diverse set of plausible “Futures” (scenarios)

MISO’s 2022 LRTP Process

1. Develop scenario-based Futures with resource forecast and siting
2. Development of planning models utilizing Futures
3. Identify potential transmission issues
4. Proposals for solutions to issues
5. Apply appropriate cost allocation
6. Recommend preferred solutions for MTEP implementation
7. Evaluate the effectiveness of various solutions

MISO’s Identified Long-Term Transmission Needs

Source: MISO LRTP Roadmap March 2021
Example: MISO Long-Term Transmission Planning (LRTP)

Scenario-based LRTP ➔ First tranche of a new “least regrets” portfolio of multi-value transmission projects (MVPs)

MISO 2022 LRTP results

- Tranche 1: $10 billion portfolio of proposed new 345 kV projects for its Midwestern footprint
- **Supports interconnection of 53,000 MW of renewable resources**
- Reduces other costs by $37-70 billion
- Portfolio of beneficial projects designed to benefit each zone within MISO’s Midwest Subregion
- Postage-stamp cost allocation within MISO’s Midwest Subregion

Source: 3-29-22 LRTP Presentation (misoenergy.org)
Addressing Short- and Long-term Uncertainties through Scenario-based Transmission Planning

Most transmission planning efforts do not adequately account for short- and long-term risks and uncertainties affecting power markets

- **Short-Term Risks:** transmission planning generally evaluates only “normal” system conditions
 - Planning process typically ignores the high cost of *short-term challenges and extreme market conditions* triggered by high-impact-low-probability ("HILP") events due to weather, transmission outages, fuel supply disruption, or unexpected load changes associated with economic booms/busts
 - Can be addressed through modeling assumptions and *sensitivities* that capture these short-term challenges

- **Long-Term Risks:** Planning does not adequately consider the full range of long-term scenarios
 - Does not capture the extent to which a less robust and flexible transmission infrastructure will help reduce the risk of high-costs incurred under different (long-term) future market fundamentals
 - Can be addressed through improved *scenario planning* that covers the full range of plausible futures

A more flexible and robust grid provides “**insurance value**” by reducing the risk of high-cost (short- and long-term) outcomes due to inadequate transmission

- Costs of inadequate infrastructure (typically are not quantified) can be much greater than the costs of the transmission investment
- Project may not quite be cost effective in “base case” future but be highly beneficial in 3 out of 5 futures
Risk Mitigation Through “Least-Regrets” Transmission Planning

Additional considerations regarding the risk mitigation and insurance value of transmission infrastructure:

• Given that it can take a decade to develop new transmission, delaying investment can easily limit future options and result in a higher-cost, higher-risk overall outcomes
 – “Wait and see” approaches limit options, so can be costly in the long term
 – The industry needs to plan for both short- and long-term uncertainties more proactively – and develop "anticipatory planning" processes

• However “least regrets” planning too often only focuses on identifying those projects that are beneficial under most circumstances
 – Does not consider the many potentially “regrettable circumstances” that could result in very high-cost outcomes
 – Focuses too much on the cost of insurance without considering the cost of not having insurance when it is needed

• Probabilistic weighting assumes risk neutrality and does not distinguish between investment options with very different risk distributions
Risk Mitigation Example: ATC’s Scenario-based Planning

In evaluating the Paddock-Rockdale Project, ATC evaluated scenarios of seven plausible futures, spanning the range of identified long-term uncertainties:

- The 40-year PV of customer benefits fell short of the $136 million PV of the project’s revenue requirement in the “Slow Growth” future, but exceeded the costs in all other futures.
- The net benefits in the other six futures ranged from:
 - $100 million (above cost) under the “High Environmental” future
 - to approx. $400 million under the “Robust Economy” and “High Wisconsin Growth” futures
 - reaching up to approx. $700 million under the “Fuel Supply Disruption” and “High Plant Retirements” futures

The B-C analyses of multiple scenarios of plausible futures showed:

- The estimated benefits can range widely across sets of plausible futures.
- The project is beneficial in most (but not all) futures.
- Risk Mitigation: Not investing in the $136m project could have left customers $400-700m worse off in four of seven plausible futures.
Advanced Grid Technologies: Fast and Cost Effective Solutions

Advanced, grid-enhancing transmission (GET) technologies can significantly and quickly increase the capability of the existing grid, offer low-cost solutions to address near-term reliability needs, and also make new transmission more valuable and cost effective in the long-term

- Increasingly well-tested and commercially-applied technologies include: dynamic line rating, smart wires and flow control devices, grid-optimized storage, and topology optimization
- Can be deployed quickly to integrate renewables on the existing grid (see Chapter III of NY Power Grid Study)
- Brattle case study in SPP: DLR, topology optimization, and advanced power-flow controls can integrate 2,670 MW of renewable generation for $90 million
- Value proposition: more visibility of actual grid capability; shift flows to underutilized portions of the grid

Consideration of GETs needs to be expanded beyond addressing operational and seamrelated reliability and congestion needs – GETs should be part of the standard set of available solutions to address generation interconnection and both short- and long-term transmission planning needs

- As low-cost solutions to address reliability needs identified in generation interconnection and near-term planning
- In long-term multi-value planning to make new transmission more cost effective and valuable, reducing system-wide costs
- Consider European experience: NOVA-Principle and CurrENT's new analysis
Benefit-cost analyses and cost allocations for proactive long-term planning can be improved to offer more cost-effective and less controversial outcomes:

- Simultaneously consider broad range of reliability, economic, and public-policy benefits, including experience gained over the last decade by others:
 - MISO, NYISO, SPP, CAISO, ERCOT examples of long-term, scenario-based, multi-value planning processes

- Reduce divisiveness of cost allocation through multi-value planning and portfolio-based allocations
 - Recognize broad range of benefits → more likely to be evenly distributed and exceed costs
 - Focus on larger portfolios of transmission projects → more uniform distribution of benefits
 - Broad range of benefits for a portfolio will also be more stable over time
 - Use cost allocations that are “roughly commensurate” rather than strictly a function of benefits

Focus less on local, near-term reliability and generation-interconnection needs, but proactively on infrastructure that provides greater flexibility and higher long-term value at lower system-wide cost

- Recognize that the most cost-effective transmission projects will tend to address multiple needs
- Lowest-cost transmission is not “least cost” from an overall customer-cost perspective

Ideally: Co-optimize generation interconnection, system operations, near-term planning, and long-term planning for local, regional, and interregional projects

Summary and Recommendations
About the Speaker

Johannes P. Pfeifenberger
PRINCIPAL
BOSTON
Hannes.pfeifenberger@brattle.com
+1.617.234.5624

Johannes (Hannes) Pfeifenberger, a Principal at The Brattle Group, is an economist with a background in electrical engineering and over twenty-five years of experience in wholesale power market design, renewable energy, electricity storage, and transmission. He also is a Visiting Scholar at MIT’s Center for Energy and Environmental Policy Research (CEEPR), a Senior Fellow at Boston University’s Institute of Sustainable Energy (BU-ISE), a IEEE Senior Member, and currently serves as an advisor to research initiatives by the U.S. Department of Energy, the National Labs, and the Energy Systems Integration Group (ESIG).

Hannes specializes in wholesale power markets and transmission. He has analyzed transmission needs, transmission benefits and costs, transmission cost allocations, and transmission-related renewable generation challenges for independent system operators, transmission companies, generation developers, public power companies, industry groups, and regulatory agencies across North America. He has worked on transmission matters in SPP, MISO, PJM, New York, New England, ERCOT, CAISO, WECC, and Canada.

He received an M.A. in Economics and Finance from Brandeis University’s International Business School and an M.S. and B.S. (“Diplom Ingenieur”) in Power Engineering and Energy Economics from the University of Technology in Vienna, Austria.
Brattle Reports on Transmission Planning

- Well-Planned Electric Transmission Saves Customer Costs: Improved Transmission Planning is Key to the Transition to a Carbon-Constrained Future
- Toward More Effective Transmission Planning: Addressing the Costs and Risks of an Insufficiently Flexible Electricity Grid
- The Benefits of Electric Transmission: Identifying and Analyzing the Value of Investments
- The Value of Diversifying Uncertain Renewable Generation through the Transmission System
- Transmission Planning for the 21st Century: Proven Practices that Increase Value and Reduce Costs

Summarizes proven approaches to quantifying various benefits
Quantifying Benefits Beyond Production Cost Savings

Relying on solely on traditionally-quantified Adjusted Production Cost (APC) results in the rejection of beneficial transmission projects:

Savings based on Load LMPs (as used by PJM) will be similarly understated (but can overstate benefits relative to APC)

Source: Transmission Planning for the 21st Century: Proven Practices that Increase Value and Reduce Costs (brattle.com)
“Checklist” of Transmission Benefits With Proven Practices for Quantifying Them

We have documented in our recent report (filed with ANOPR comments), available proven practices:

1. Consider for each project (or synergistic portfolio of projects) the full set of benefits transmission can provide (see table)
2. Identify the benefits that plausibly exist and may be significant for that particular project or portfolio; then
3. Focus on quantifying those benefits

(See our recent report with Grid Strategies for a summary of quantification practices)

<table>
<thead>
<tr>
<th>Benefit Category</th>
<th>Transmission Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Traditional Production Cost Savings</td>
<td>Adjusted Production Cost (APC) savings as currently estimated in most planning processes</td>
</tr>
<tr>
<td>2. Additional Production Cost Savings</td>
<td>i. Impact of generation outages and A/S unit designations</td>
</tr>
<tr>
<td></td>
<td>ii. Reduced transmission energy losses</td>
</tr>
<tr>
<td></td>
<td>iii. Reduced congestion due to transmission outages</td>
</tr>
<tr>
<td></td>
<td>iv. Reduced production cost during extreme events and system contingencies</td>
</tr>
<tr>
<td></td>
<td>v. Mitigation of typical weather and load uncertainty, including the geographic</td>
</tr>
<tr>
<td></td>
<td>diversification of uncertain renewable generation variability</td>
</tr>
<tr>
<td></td>
<td>vi. Reduced cost due to imperfect foresight of real-time system conditions, including</td>
</tr>
<tr>
<td></td>
<td>renewable forecasting errors and intra-hour variability</td>
</tr>
<tr>
<td></td>
<td>vii. Reduced cost of cycling power plants</td>
</tr>
<tr>
<td></td>
<td>viii. Reduced amounts and costs of operating reserves and other ancillary services</td>
</tr>
<tr>
<td></td>
<td>ix. Mitigation of reliability-must-run (RMR) conditions</td>
</tr>
<tr>
<td></td>
<td>x. More realistic “Day 1” market representation</td>
</tr>
<tr>
<td>3. Reliability and Resource Adequacy Benefits</td>
<td>i. Avoided/deferred cost of reliability projects (including aging infrastructure</td>
</tr>
<tr>
<td></td>
<td>replacements) otherwise necessary</td>
</tr>
<tr>
<td></td>
<td>ii. (a) Reduced loss of load probability or (b) reduced planning reserve margin</td>
</tr>
<tr>
<td>4. Generation Capacity Cost Savings</td>
<td>i. Capacity cost benefits from reduced peak energy losses</td>
</tr>
<tr>
<td></td>
<td>ii. Deferred generation capacity investments</td>
</tr>
<tr>
<td></td>
<td>iii. Access to lower-cost generation resources</td>
</tr>
<tr>
<td>5. Market Facilitation Benefits</td>
<td>i. Increased competition</td>
</tr>
<tr>
<td></td>
<td>ii. Increased market liquidity</td>
</tr>
<tr>
<td>6. Environmental Benefits</td>
<td>i. Reduced expected cost of potential future emissions regulations</td>
</tr>
<tr>
<td></td>
<td>ii. Improved utilization of transmission corridors</td>
</tr>
<tr>
<td>7. Public Policy Benefits</td>
<td>Reduced cost of meeting public policy goals</td>
</tr>
<tr>
<td>8. Other Project-Specific Benefits</td>
<td>Examples: increased storm hardening and wild-fire resilience, increased fuel diversity</td>
</tr>
<tr>
<td></td>
<td>and system flexibility, reduced cost of future transmission needs, increased wheeling</td>
</tr>
<tr>
<td></td>
<td>revenues, HVDC operational benefits</td>
</tr>
</tbody>
</table>
Example: MISO Long-Term Transmission Planning (LRTP)

20-40-year PV of benefits ($37-$70b) substantially exceeds PV of TRR ($14-17b)

B-C analysis based on multiple benefit metrics:
1. Congestion and fuel savings
2. Avoided capital costs of local resource investments
3. Avoided transmission investment
4. Reduced resource adequacy requirements
5. Avoided risk of load shedding
6. Decarbonization value
7. Reliability issues addressed by LRTP
8. Other qualitative and indirect benefits

Source: 3-29-22 LRTP Presentation (misoenergy.org)
Example: MISO Long-Term Transmission Planning (LRTP)

Postage-stamp within MISO’s Midwest Subregion results in allocated costs that are roughly commensurate with benefits received:

- Each Zone’s benefits are at least 2.1-3.4 times higher than allocated costs
- B-C ratios vary across zones, scenarios, and study assumptions
- No costs allocated to MISO’s South Subregion due to disproportionately small benefits received

Source: 3-29-22 LRTP Presentation (misoenergy.org)

With PSC support, NYISO developed its “public policy transmission planning process” (PPTPP) that quantifies multiple transmission benefits for a number of long-term scenarios. Resulted in approval and competitive solicitation of several major upgrades to the New York transmission infrastructure providing.

Summary of Quantified Benefits and Costs
(additional benefits considered qualitatively)

See also: AC Transmission Public Policy Transmission Plan (nyiso.com)
Further Improvements to the Generation Interconnection Process

Reducing the scope of upgrades triggered by generation interconnection processes likely would both accelerate and lower the cost of renewable interconnection:

- **Attractive: UK “Connect and Manage” (replaced prior “Invest and Connect”)**
 - Similar to ERCOT; reduced lead times by 5 years; network constraints addressed later (e.g., with congestion management)

- **ERCOT’s generation interconnection process is perhaps most effective in the U.S.**
 - Efficient handoff of study roles by ERCOT and Transmission Owners limits restudy needs
 - Projects can be developed and interconnected within 2-3 years; in other regions, the interconnection study process itself may take longer than that
 - Upgrades focused only on local interconnection needs and are recovered through postage stamp
 - Network constraints managed through market dispatch – which imposes high congestion and curtailment risks on interconnecting generators … in part due to ERCOT’s insufficiently proactive multi-value grid planning
 - See [working-paper.pdf (enelgreenpower.com)](https://enelgreenpower.com) [Note: Brattle was not involved]

Generation interconnection based on “connect and manage” when combined with proactive transmission planning offers more timely and cost-effective solutions
Additional Reading on Transmission

Pfeifenberger, **Generation Interconnection and Transmission Planning**, ESIG Joint Generation Interconnection Workshop, August 9, 2022.

Pfeifenberger, **Proactive, Scenario-Based, Multi-Value Transmission Planning**, Presented at PIM Long-Term Transmission Planning Workshop, June 7, 2022.

Pfeifenberger, Tsoukalis, Newell, “**The Benefit and Cost of Preserving the Option to Create a Meshed Offshore Grid for New York**,” Prepared for NYSERDA with Siemens and Hatch, November 9, 2022.

Chang and Pfeifenberger, “**Well-Planned Electric Transmission Saves Customer Costs: Improved Transmission Planning is Key to the Transition to a Carbon-Constrained Future**,” WIRES and The Brattle Group, June 2016.

Pfeifenberger and Hou, “**Seams Cost Allocation: A Flexible Framework to Support Interregional Transmission Planning**,” on behalf of SPP, April 2012.

Brattle Group Practices and Industries

ENERGY & UTILITIES
- Competition & Market Manipulation
- Distributed Energy Resources
- Electric Transmission
- Electricity Market Modeling & Resource Planning
- Electrification & Growth Opportunities
- Energy Litigation
- Energy Storage
- Environmental Policy, Planning and Compliance
- Finance and Ratemaking
- Gas/Electric Coordination
- Market Design
- Natural Gas & Petroleum
- Nuclear
- Renewable & Alternative Energy

LITIGATION
- Accounting
- Analysis of Market Manipulation
- Antitrust/Competition
- Bankruptcy & Restructuring
- Big Data & Document Analytics
- Commercial Damages
- Environmental Litigation & Regulation
- Intellectual Property
- International Arbitration
- International Trade
- Labor & Employment
- Mergers & Acquisitions Litigation
- Product Liability
- Securities & Finance
- Tax Controversy & Transfer Pricing
- Valuation
- White Collar Investigations & Litigation

INDUSTRIES
- Electric Power
- Financial Institutions
- Infrastructure
- Natural Gas & Petroleum
- Pharmaceuticals & Medical Devices
- Telecommunications, Internet, and Media
- Transportation
- Water